Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A, H là trung điểm của BC nên \(AH\perp BC\).
Có \(\overrightarrow{AM}.\overrightarrow{BD}=\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{AD}\right)\left(\overrightarrow{BH}+\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{BH}+\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}+\overrightarrow{AD}.\overrightarrow{HD}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AH}.\overrightarrow{HD}+\overrightarrow{AD}.\overrightarrow{BH}\right)\) (do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{AH}.\left(\overrightarrow{BH}+\overrightarrow{HD}\right)+\dfrac{1}{2}\left(\overrightarrow{AH}+\overrightarrow{HD}\right).\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{BH}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\)
\(=\dfrac{1}{2}\overrightarrow{AH}.\overrightarrow{HD}+\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{BH}\) ( do \(AH\perp BC\) )
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{BH}\right)\)
\(=\dfrac{1}{2}\overrightarrow{HD}\left(\overrightarrow{AH}+\overrightarrow{HC}\right)\) ( doM là trung điểm của BC).
\(=\dfrac{1}{2}\overrightarrow{HD}.\overrightarrow{AC}\)
\(=0\) (Do \(HD\perp AC\) )
Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .
Do đó E P Q ^ + P C K ^ = 90 0 , nên P K ⊥ A C .
Gọi E là trung điểm AC, do H và K cùng nhìn AC dưới 1 góc vuông nên H, K thuộc đường tròn đường kính AC (1)
\(\Rightarrow EH=EK\) hay E nằm trên trung trực HK
Gọi F là trung điểm HK \(\Rightarrow F\left(2;-1\right)\)
\(\overrightarrow{HK}=\left(14;-8\right)=2\left(7;-4\right)\Rightarrow\) EF nhận (7;-4) là 1 vtpt
Phương trình EF: \(7\left(x-2\right)-4\left(y+1\right)=0\Leftrightarrow7x-4y-18=0\)
Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}x-y+10=0\\7x-4y-18=0\end{matrix}\right.\) \(\Rightarrow E\left(\dfrac{58}{3};\dfrac{88}{3}\right)\)
\(\widehat{ACH}=\widehat{HAK}\) (cùng phụ \(\widehat{ABC}\)) \(\Rightarrow AH=HK\)
Mà \(AE=EK\) theo (1) \(\Rightarrow AK\) là trung trực EH
\(\overrightarrow{HE}=\left(\dfrac{73}{3};\dfrac{103}{3}\right)=\dfrac{1}{3}\left(73,103\right)\) \(\Rightarrow AK\) nhận \(\left(103;-73\right)\) là 1 vtpt
Tới đây bạn hãy kiểm tra lại số liệu, số liệu quá bất hợp lý
Tính tiếp như sau:
Viết pt AK (biết đi qua K và có vtpt như trên)
Tìm tọa độ giao điểm P của EH và AK
Khi đó P là trung điểm AK, tìm tọa độ A dễ dàng bằng công thức trung điểm
Bài 2:
Giải:
Đổi \(0,6=\frac{3}{5}\)
Tổng độ dài 2 cạnh là:
32 : 2 = 16 ( cm )
Gọi độ dài 2 cạnh của hình chữ nhật là a, b
Ta có: \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\) và a + b = 16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{16}{8}=2\)
+) \(\frac{a}{3}=2\Rightarrow a=6\)
+) \(\frac{b}{5}=2\Rightarrow b=10\)
Vậy chiều dài 2 cạnh của hình chữ nhật là 6 cm; 10 cm
Bài 3:
Ta có: \(y=f\left(x\right)=x2-1\)
Khi \(f\left(x\right)=1\)
\(\Rightarrow1=x2-1\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)