K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔBHA vuông tại H

=>BH<AB

ΔCKA vuông tại K 

=>CK<AC

=>BH+CK<AB+AC

b: ΔBDH vuông tại H

=>BH<BD

ΔCKD vuông tại K 

=>CK<CD

=>BH+CK<BD+CD=BC

18 tháng 2 2022

a. xét tam giác vuông AHB và tam giác vuông AHC

\(AB>AH\) ( BĐT tam giác )

\(AC>AH\) ( BĐT tam giác )

\(\Rightarrow AB+AC>2.AH\) hay \(AH< \dfrac{AB+AC}{2}\)

b.xét tam giác ABM và tam giác ACM, có:

AB = AC ( ABC cân )

góc BAM = góc CAM ( ABC cân )

AM : cạnh chung 

Vậy tam giác ABM = tam giác ACM ( c.g.c )

=> MB = MC ( 2 cạnh tương ứng )

18 tháng 2 2022

a. -Vì AH⊥BC tại H (gt).

Nên AH là đường vuông góc, AB, AC là các đường xiên.

\(\Rightarrow AH< AB;AH< AC\) (quan hệ giữa đường vuông góc và đường xiên).

\(\Rightarrow AH+AH< AB+AC\)

\(\Rightarrow2AH< AB+AC\)

\(\Rightarrow AH< \dfrac{AB+AC}{2}\)

b. -Có: AH⊥BC tại H (gt).

Nên BH, CH lần lượt là hình chiếu của đường xiên AB,AC lên BC.

Mà \(AB< AC\) (gt)

\(\Rightarrow BH< CH\) (quan hệ giữa đường xiên và hình chiếu).

-Có: MH⊥BC tại H (gt).

Nên BH, CH lần lượt là hình chiếu của đường xiên MB,MC lên BC.

Mà \(BH< CH\left(cmt\right)\)

\(\Rightarrow MB< MC\)(quan hệ giữa đường xiên và hình chiếu).

a: Xét ΔABC có AC>AB

mà HC,HB lần lượt là hình chiếu của AC,AB trên BC

nên HC>HB

b: Xét ΔDBC có HB<HC

mà HB,HC lần lượt là hình chiếu của DB,DC trên BC

nên DB<DC

ΔAED vuông tại E

=>AD là cạnh lớn nhất trong ΔAED
=>AD>AE

Ta có: ΔCFD vuông tại F

=>CD là cạnh lớn nhất trong ΔCFD

=>CD>CF

Ta có: AD>AE

CD>CF

Do đó: AD+CD>AE+CF

=>AC>AE+FC

19 tháng 3 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+ AE là đường vuông góc hạ từ đỉnh A xuống đường thẳng BF

⇒ AE < AD. ( quan hệ đường vuông góc và đường xiên). (1)

+ CF là đường vuông góc hạ từ đỉnh C xuống đường thẳng BF

⇒ CF < CD ( quan hệ đường vuông góc và đường xiên). (2)

Từ (1) và (2) vế cộng vế ta được: AE + CF < AD + CD = AC.