Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC
nên HB<HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB<HC
=>MB<MC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
a. xét tam giác vuông AHB và tam giác vuông AHC, có:
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
Vậy tam giác vuông AHB = tam giác vuông AHC ( ch.gn )
b. ta có: trong tam giác cân ABC đường cao cũng là đường trung tuyến
=> BH = BC :2 = 10 : 2 =5 cm
Áp dụng định lý pitago vào tam giác vuông ABH
\(AB^2=AH^2+BH^2\)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=\sqrt{144}=12cm\)
a. xét tam giác vuông AHB và tam giác vuông AHC
\(AB>AH\) ( BĐT tam giác )
\(AC>AH\) ( BĐT tam giác )
\(\Rightarrow AB+AC>2.AH\) hay \(AH< \dfrac{AB+AC}{2}\)
b.xét tam giác ABM và tam giác ACM, có:
AB = AC ( ABC cân )
góc BAM = góc CAM ( ABC cân )
AM : cạnh chung
Vậy tam giác ABM = tam giác ACM ( c.g.c )
=> MB = MC ( 2 cạnh tương ứng )
a. -Vì AH⊥BC tại H (gt).
Nên AH là đường vuông góc, AB, AC là các đường xiên.
\(\Rightarrow AH< AB;AH< AC\) (quan hệ giữa đường vuông góc và đường xiên).
\(\Rightarrow AH+AH< AB+AC\)
\(\Rightarrow2AH< AB+AC\)
\(\Rightarrow AH< \dfrac{AB+AC}{2}\)
b. -Có: AH⊥BC tại H (gt).
Nên BH, CH lần lượt là hình chiếu của đường xiên AB,AC lên BC.
Mà \(AB< AC\) (gt)
\(\Rightarrow BH< CH\) (quan hệ giữa đường xiên và hình chiếu).
-Có: MH⊥BC tại H (gt).
Nên BH, CH lần lượt là hình chiếu của đường xiên MB,MC lên BC.
Mà \(BH< CH\left(cmt\right)\)
\(\Rightarrow MB< MC\)(quan hệ giữa đường xiên và hình chiếu).