Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có góc B<góc C
nên AB>AC
Xét ΔABC có
AB>AC
HB,HC lần lượt là hình chiếu của AB,AC trên BC
=>HB>HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB>HC
=>MB>MC
c: MB>MC
=>góc MCB>góc MBC
a) xét tam giác ABC có góc C < góc B
=> AB < AC ( đ/lý 1)
vì góc đối diện vs cạnh lớn hơn thì lớn hơn và ngược lại
a)tam giác ABC có góc C< góc B =>AB<AC
b)Ta có:BH là hình chiếu của AB
HC là hình chiếu của AC
Mà:AB<AC(CMT)
Nên:BH<HC
c)Ta có:BH+HC=BC
Mà:BH<HC(CMT)
Nên:BH<BC:2
Mà:BM=BC:2(M là trung điểm BC)
=>BH<BM
=>H nằm giữa B và M
a. xét tam giác vuông AHB và tam giác vuông AHC
\(AB>AH\) ( BĐT tam giác )
\(AC>AH\) ( BĐT tam giác )
\(\Rightarrow AB+AC>2.AH\) hay \(AH< \dfrac{AB+AC}{2}\)
b.xét tam giác ABM và tam giác ACM, có:
AB = AC ( ABC cân )
góc BAM = góc CAM ( ABC cân )
AM : cạnh chung
Vậy tam giác ABM = tam giác ACM ( c.g.c )
=> MB = MC ( 2 cạnh tương ứng )
a. -Vì AH⊥BC tại H (gt).
Nên AH là đường vuông góc, AB, AC là các đường xiên.
\(\Rightarrow AH< AB;AH< AC\) (quan hệ giữa đường vuông góc và đường xiên).
\(\Rightarrow AH+AH< AB+AC\)
\(\Rightarrow2AH< AB+AC\)
\(\Rightarrow AH< \dfrac{AB+AC}{2}\)
b. -Có: AH⊥BC tại H (gt).
Nên BH, CH lần lượt là hình chiếu của đường xiên AB,AC lên BC.
Mà \(AB< AC\) (gt)
\(\Rightarrow BH< CH\) (quan hệ giữa đường xiên và hình chiếu).
-Có: MH⊥BC tại H (gt).
Nên BH, CH lần lượt là hình chiếu của đường xiên MB,MC lên BC.
Mà \(BH< CH\left(cmt\right)\)
\(\Rightarrow MB< MC\)(quan hệ giữa đường xiên và hình chiếu).
a: Xét ΔABC có AC>AB
mà HC,HB lần lượt là hình chiếu của AC,AB trên BC
nên HC>HB
b: Xét ΔDBC có HB<HC
mà HB,HC lần lượt là hình chiếu của DB,DC trên BC
nên DB<DC
a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC
nên HB<HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB<HC
=>MB<MC