K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC

nên HB<HC

b: Xét ΔMBC có

HB,HC lần lượt là hình chiếu của MB,MC trên BC

HB<HC

=>MB<MC

29 tháng 1 2019

Ngu vãi 

9 tháng 5 2020

hung huyen ngu vai

a: Xét ΔABC có góc B<góc C

nên AB>AC

Xét ΔABC có

AB>AC

HB,HC lần lượt là hình chiếu của AB,AC trên BC

=>HB>HC

b: Xét ΔMBC có

HB,HC lần lượt là hình chiếu của MB,MC trên BC

HB>HC

=>MB>MC

c: MB>MC

=>góc MCB>góc MBC

a) xét tam giác ABC có góc C < góc B

                             =>     AB   <   AC      ( đ/lý 1)

vì góc đối diện vs cạnh lớn hơn thì lớn hơn và ngược lại

23 tháng 3 2016

a)tam giác ABC có góc C< góc B =>AB<AC

b)Ta có:BH là hình chiếu của AB

            HC là hình chiếu của AC

Mà:AB<AC(CMT)

Nên:BH<HC

c)Ta có:BH+HC=BC

Mà:BH<HC(CMT)

Nên:BH<BC:2

Mà:BM=BC:2(M là trung điểm BC)

=>BH<BM

=>H nằm giữa B và M

18 tháng 2 2022

a. xét tam giác vuông AHB và tam giác vuông AHC

\(AB>AH\) ( BĐT tam giác )

\(AC>AH\) ( BĐT tam giác )

\(\Rightarrow AB+AC>2.AH\) hay \(AH< \dfrac{AB+AC}{2}\)

b.xét tam giác ABM và tam giác ACM, có:

AB = AC ( ABC cân )

góc BAM = góc CAM ( ABC cân )

AM : cạnh chung 

Vậy tam giác ABM = tam giác ACM ( c.g.c )

=> MB = MC ( 2 cạnh tương ứng )

18 tháng 2 2022

a. -Vì AH⊥BC tại H (gt).

Nên AH là đường vuông góc, AB, AC là các đường xiên.

\(\Rightarrow AH< AB;AH< AC\) (quan hệ giữa đường vuông góc và đường xiên).

\(\Rightarrow AH+AH< AB+AC\)

\(\Rightarrow2AH< AB+AC\)

\(\Rightarrow AH< \dfrac{AB+AC}{2}\)

b. -Có: AH⊥BC tại H (gt).

Nên BH, CH lần lượt là hình chiếu của đường xiên AB,AC lên BC.

Mà \(AB< AC\) (gt)

\(\Rightarrow BH< CH\) (quan hệ giữa đường xiên và hình chiếu).

-Có: MH⊥BC tại H (gt).

Nên BH, CH lần lượt là hình chiếu của đường xiên MB,MC lên BC.

Mà \(BH< CH\left(cmt\right)\)

\(\Rightarrow MB< MC\)(quan hệ giữa đường xiên và hình chiếu).

a: BH<AB

CK<AC

=>BH+CK<AB+AC

b: BH<BD

CK<CD

=>BH+CD<BD+CD=BC

a: Xét ΔABC có AC>AB

mà HC,HB lần lượt là hình chiếu của AC,AB trên BC

nên HC>HB

b: Xét ΔDBC có HB<HC

mà HB,HC lần lượt là hình chiếu của DB,DC trên BC

nên DB<DC