K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AC>AB

mà HC,HB lần lượt là hình chiếu của AC,AB trên BC

nên HC>HB

b: Xét ΔDBC có HB<HC

mà HB,HC lần lượt là hình chiếu của DB,DC trên BC

nên DB<DC

a: BH<AB

CK<AC

=>BH+CK<AB+AC

b: BH<BD

CK<CD

=>BH+CD<BD+CD=BC

a: Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD

b: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)

nên ΔABD đều

c: Ta có: ΔABD đều

=>\(\widehat{BAD}=60^0\)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}=90^0-60^0=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔDHA=ΔDEC

=>AH=EC

d: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)

=>\(BC=5\cdot2=10\left(cm\right)\)

Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{AH}{5}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

1: 

Xét ΔABD và ΔACE có

AB=AC

góc B=góc C

BD=CE

=>ΔABD=ΔACE

=>AD=AE

2:

a: H là trung điểm của DB

=>D thuộc tia đối của tia HB

=>D thuộc HC

b: góc KCD=góc DAH

góc DAH=góc CED

=>góc KCD=góc CED

Xét ΔCED vuông tại E và ΔCKD vuông tại K có

CD chung

góc ECD=góc KCD

=>ΔCED=ΔCKD

=>DE=DK

12 tháng 3 2020

a) vì tam giác ABD có đường cao AH đồng thời là đường trung tuyến ( do BH=DH)

=> nên tam giác  ABD cân tại A => AB=AD

b) vì tam giác  ABC vuông nên góc ACB +gócABC =90

                                                  => góc ABD = 60 độ

tam giác ABD cân tại A có 1 góc = 60 độ => là tam giác đều 

c) có vấn đề gì đó bn xem lại nha 

d) 

c) ta có sin ACB =\(\frac{1}{2}=\frac{AB}{BC}\)

=> BC = 10 tìm AC tương tự nha

_ Kudo_

a: \(\widehat{B}< \widehat{C}\)

nên AB>AC

Xét ΔABC có AB>AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB>HC

b: Xét ΔDBC có HB>HC

mà HB là hình chiếu của DB trên BC

và HC là hình chiếu của DC trên BC

nên DB>DC

a: Ta có: ΔBEH vuông tại H

nên \(\widehat{BEH}< 90^0\)

=>\(\widehat{BEA}>90^0\)

=>BA>BE

b: Ta có: ΔEHC vuông tại H

nên \(\widehat{HEC}< 90^0\)

=>\(\widehat{AEC}>90^0\)

hay CA>CE

c: Xét ΔEBC có HB<HC

mà HB là hình chiếu của EB trên BC

và HC là hình chiếu của EC trên BC

nên EB<EC