Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
a: Xét ΔABC có AC>AB
mà HC,HB lần lượt là hình chiếu của AC,AB trên BC
nên HC>HB
b: Xét ΔDBC có HB<HC
mà HB,HC lần lượt là hình chiếu của DB,DC trên BC
nên DB<DC
a) \(\widehat{C}< \widehat{B}\)
\(\Rightarrow AB< AC\)
\(\Rightarrow HB< HC\)
\(\Rightarrow AB+HB< AC+HC\)
b) \(\widehat{AMH}< 90^o\)
\(\Rightarrow\widehat{AMB}>90^o\)
\(\Rightarrow AM< AB\)
\(\widehat{ACB}< 90^o\)
\(\Rightarrow\widehat{ACN}>90^o\)
\(\Rightarrow AC< AN\)
\(\Rightarrow AB< AN\)
\(\Rightarrow AM< AB< AN\)
a)
Xét ΔABC có \(\widehat{B}>\widehat{C}\)(gt)
mà cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên AC>AB(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
hay AB<AC
Xét ΔABC có
BH là hình chiếu của AB trên BC
CH là hình chiếu của AC trên BC
mà AB<AC(cmt)
nên BH<CH(Định lí quan hệ giữa hình chiếu và đường xiên)
b) Xét ΔAHD và ΔAED có
AH=AE(gt)
\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))
AD chung
Do đó: ΔAHD=ΔAED(c-g-c)
Suy ra: DH=DE(hai cạnh tương ứng)
a: góc B<góc C
=>AB>AC
Xét ΔABC có AB>AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB>HC
b: Xét ΔMBC có HB>HC
mà HB,HC lần lượt là hình chiếu của MB,MC trên BC
nên MB>MC
=>góc MCB>góc MBC
a: góc C<góc B
=>AB<AC
=>HB<HC
=>AB+HB<AC+HC
b: góc AMH<90 độ
=>góc AMB>90 độ
=>AM<AB
góc ACB<90 độ
=>góc ACN>90 độ
=>AC<AN
=>AB<AN
=>AM<AB<AN
a: \(\widehat{B}< \widehat{C}\)
nên AB>AC
Xét ΔABC có AB>AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB>HC
b: Xét ΔDBC có HB>HC
mà HB là hình chiếu của DB trên BC
và HC là hình chiếu của DC trên BC
nên DB>DC