K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

A B C F D E H

a,Ta có \(\frac{S_{HBC}}{S_{ABC}}=\frac{\frac{1}{2}HD.BC}{\frac{1}{2}AD.BC}=\frac{HD}{AD}\)

tương tự \(\frac{S_{HAC}}{S_{ABC}}=\frac{HE}{BE};\frac{S_{HAB}}{S_{ABC}}=\frac{HF}{CF}\)

\(\Rightarrow\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{HBC}}{S_{ABC}}+\frac{S_{HAC}}{S_{ABC}}+\frac{S_{HAB}}{S_{ABC}}=\frac{S_{HBC}+S_{HAC}+S_{HAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\left(ĐPCM\right)\)

b, bổ sung đề rồi mình làm tiếp cho ạ

28 tháng 2 2020

Câu b) em có cách này cô ạ, cô check giùm em xem có đúng không ạ :

Ta có : \(\frac{HA}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABC}}\)

( Tính chất dãy tỉ số bằng nhau )

Tương tự ta có :

\(\frac{HB}{BE}=\frac{S_{AHB}+S_{BHC}}{S_{ABC}}\)\(\frac{HC}{CF}=\frac{S_{AHC}+S_{BHC}}{S_{ABC}}\)

Khi đó : \(\frac{HA}{AD}+\frac{HB}{BE}+\frac{HC}{CF}=\frac{2\left(S_{ABH}+S_{AHC}+S_{BHC}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\)

Vậy : \(\frac{HA}{AD}+\frac{HB}{BE}+\frac{HC}{CF}=2\)

25 tháng 2 2020

a)Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/ADNguồn: Lazi.

3 tháng 2 2017

k minh minh giai

3 tháng 2 2017

giúp mik vs 

hứa sẽ k nếu đúng và đầy đủ 

1 tháng 5 2021

Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/AD

Đây nhé

11 tháng 4 2020

*OLM đang lỗi nên không vẽ được hình, bạn vào thống kê mình để xem hình nhé! Mình vẽ ở GeoGebra*

\(\hept{\begin{cases}S_{BHC}=\frac{1}{2}\cdot BC\cdot HD\\S_{ABC}=\frac{1}{2}\cdot BC\cdot AD\end{cases}}\Rightarrow\frac{HD}{AD}=\frac{S_{BHC}}{S_{ABC}}\)

Tương tự cũng có: \(\hept{\begin{cases}\frac{HE}{BE}=\frac{S_{AHC}}{S_{ABC}}\\\frac{HF}{CF}=\frac{S_{AHB}}{S_{ABC}}\end{cases}}\)

\(\Rightarrow\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

b) Xét \(\Delta BHD\) và  \(\Delta BCE\)có:

\(\widehat{B}\)chung

\(\widehat{BDH}=\widehat{BEC}=90^o\)

=> \(\Delta BHD\)đồng dạng với \(\Delta\)BEC (g.g)

=> \(\frac{BH}{BC}=\frac{BD}{BE}\Rightarrow BH\cdot BE=BC\cdot BD\left(1\right)\)

Cmtt: \(\Delta CHD\)đồng dạng \(\Delta CBF\)(g.g)

=> \(\frac{CH}{CB}=\frac{CD}{CF}\Rightarrow CH\cdot CF=CB\cdot CD\left(2\right)\)

Từ (1) (2) => \(CH\cdot CF+BH\cdot BE=BC\cdot BD+CD\cdot CB=BC^2\)

c) \(\widehat{HDC}=\widehat{HEC}=90^o\)

=> Tứ giác HDCE nội tiếp

=> \(\widehat{HED}=\widehat{HCD}\)(3)

 \(\widehat{AFH\:}=\widehat{AEH}=90^o\)

=> AFHE nội tiếp

=> \(\widehat{FEH}=\widehat{FAH}\left(4\right)\)

Mà \(\widehat{FAH}=\widehat{HCD}\) (cùng phụ \(\widehat{ABC}\)) (5)

(3)(4)(5)=> \(\widehat{FEH}=\widehat{HED}\)

=> EH là phân giác \(\widehat{FED}\)

Cmtt cũng được: DH là phân giác \(\widehat{FDE}\)và FH là phân giác \(\widehat{DFE}\)

=> H là tâm đường tròn nội tiếp tam giác EFD

=> H cách đều EF; FD; ED

d) Gọi O là giao của phân giác \(\widehat{BHC}\)và trung trực của CH. Theo gt thì điểm O cố đnhj

Ta có: OH=OC => \(\Delta\)HOC cân tại O => \(\widehat{CHO}=\widehat{HCO}\)

Mà \(\widehat{BHO}=\widehat{CHO}\)nên \(\widehat{MHO}=\widehat{NCO}\)

=> \(\Delta OMH=\Delta ONC\left(cgc\right)\)

=> OM=ON

=> O thuộc đường trung trực của MN, hay đường trung trực của MN luôn đi qua 1 điểm cố định

12 tháng 4 2020

@qu y nh Bạn có thể làm ý c theo cách khác giúp mk đc không ạ!!! Mk chưa học tứ giác nội tiếp(Nội dung lớp 9)