K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2020

Chịu rồi nhé bạn

18 tháng 8 2017

A B C D E F I K O

EF đường trung bình của tam giác ABC => EF//BC (1)

IK là đường trung bình của tam giác BOC => IK//BC (2)

Từ (1) và (2) => EF//IK (*)

EK là đường trung bình của tam giác AOC => EK//AO (3)

IF là đường trung bình của tam giác AOB => IF//AO (4)

Từ (3) và (4) => EK//IF (**)

Từ (*) và (**) => Tứ giác EFIK là hình bình hành (đpcm)

EF đường trung bình của tam giác ABC => EF//BC (1)

IK là đường trung bình của tam giác BOC => IK//BC (2)

Từ (1) và (2) => EF//IK (*)

EK là đường trung bình của tam giác AOC => EK//AO (3)

IF là đường trung bình của tam giác AOB => IF//AO (4)

Từ (3) và (4) => EK//IF (**)

Từ (*) và (**) => Tứ giác EFIK là hình bình hành (đpcm)

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

4 tháng 10 2021

Ta chứng minh được \(FI;KE\) là đtb tam giác AGB;AGC

Do đó \(FI=KE=\dfrac{1}{2}AG;FI//KE\left(//AG\right)\)

Vậy FEKI là hbh

 

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

Lời giải:
Vì $E, F$ lần lượt là trung điểm của $AC, AB$ nên $EF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$

$\Rightarrow EF=\frac{1}{2}BC$ và $EF\parallel BC$ (1)

Vì $K, I$ lần lượt là trung điểm $GC, GB$ nên $KI$ là đtb của tam giác $GBC$ ứng với cạnh $BC$

$\Rightarrow KI=\frac{1}{2}BC$ và $KI\parallel BC$ (2)

Từ $(1); (2)$ suy ra $EF\parallel KI$ và $EF=KI$

Tứ giác $FEKI$ có 2 cạnh đối $EF, KI$ song song và bằng nhau nên là hbh. Ta có đpcm.

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

Hình vẽ:

17 tháng 10 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

14 tháng 12 2022

a: \(S_{CAB}=\dfrac{4\cdot6}{2}=2\cdot6=12\left(cm^2\right)\)

b: Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

nên BHCK là hình bình hành

c: BHCK là hình bình hành

nên BH//CK; BK//CH

=>BK vuông góc với BA,CK vuông góc với CA

30 tháng 10 2023

cứu tớ

 

30 tháng 10 2023

a:

BH\(\perp\)AC

CK\(\perp\)AC

Do đó: BH//CK

CH\(\perp\)AB

BK\(\perp\)BA

DO đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b,c: Q,F ở đâu vậy bạn?