K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

a) Chứng minh : BHCK là hình bình hành 

Xét tứ giác BHCK có :                MH = MK = HK/2

                                                    MB = MI = BC/2 

Suy ra : BHCK là hình bình hành 

b) BK vuông góc AB và CK vuông góc AC

Vì BHCK là hình bình hành ( cmt ) 

Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )

mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )

Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )

c) Chứng minh : BIKC là hình thang cân 

Vì I đối xứng với H qua BC nên BC là đường trung bình của HI 

Mà M thuộc BC    Suy ra : MH = MI ( tính chất đường trung trực ) 

mà MH = MK = HK/2 (gt)

Suy ra : MI = MH = MK = 1/2 HC 

Suy ra : Tam giác HIK vuông góc tại I 

mà BC vuông góc HI (gt)

Suy ra : IC // BC 

Suy ra : BICK là hình thang  (1) 

Ta có : BC là đường trung trực của HI (cmt) 

Suy ra : CI = CH 

1 tháng 11 2020

Tiếp ý c 

mà CH = BK ( vì BKCH là hình bình hành) 

Suy ra : BK = CI (2)

Từ ( 1) và (2) Suy ra : BICK là hình thang cân (dấu hiệu nhận biết )

d) Giả sử GHCK là hình thang cân 

Suy ra : Góc HCK = Góc GHC

mà góc HCK + góc C1 = 90 độ 

      góc GHC + góc C2 = 90 độ 

Suy ra : Góc C1= góc C2 

Suy ra : CF là đường cao đồng thời là đường phân giác của tam giác ABC 

Suy ra : Tam giác ABC cân tại C 

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...

15 tháng 11 2021

a: Xét tứ giác BHCK có 

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

15 tháng 11 2021

b) Ta có: Tứ giác BHCK là hình bình hành.

=> HC//BK mà H thuộc FC (gt)

=> FC//BK(1)

FC vuông góc với AB(gt)(2)

Từ (1)(2) suy ra AB vuông góc với  BK

Tương tự:

Có: tứ giác BHCK là hbh(cmt)

=> BH//KC mà H thuộc EB(gt)

=> BE// KC mà BE vuông góc với AC=> KC vuông góc với  AC

18 tháng 10 2021

a) Tứ giác BHCKBHCK có 2 đường chéo HKHK và BCBC cắt nhau tại trung điểm MM của mỗi đường

Do đó tứ giác BHCKBHCK là hình bình hành

 

b) Tứ giác BHCKBHCK là hình bình hành

⇒BK∥CH⇒BK∥CH

Mà CH⊥ABCH⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

 

c) Gọi J=BC∩HIJ=BC∩HI

Xét ΔBHIΔBHI có BJBJ vừa là đường trung tuyến, vừa là đường cao nên ΔBHIΔBHI cân đỉnh B

⇒BJ⇒BJ là đường phân giác của ˆHBIHBI^

⇒ˆIBC=ˆHBC⇒IBC^=HBC^

mà ˆHBC=ˆKCBHBC^=KCB^ (hai góc ở vị trí so le trong do BH//CK)

Từ 2 điều trên ⇒ˆIBC=ˆKCB⇒IBC^=KCB^ (*)

ΔHIKΔHIK có JMJM là đường trung bình của tam giác, nên JM//IKJM//IK

Hay BC//IK⇒BIKCBC//IK⇒BIKC là hình thang (**)

Từ (*) và (**) suy ra BIKCBIKC là hình thang cân.

 

d) Tứ giác GHCKGHCK có GK∥HCGK∥HC

Do đó GHCKGHCK là hình thang

Để GHCKGHCK là hình thang cân thì ˆGHC=ˆKCHGHC^=KCH^

mà ˆKCH=ˆHBKKCH^=HBK^ (hai góc cùng bù ˆBHCBHC^ do BHCKBHCK là hình bình hành)

Từ hai điều trên ⇒ˆGHC=ˆHBK⇒GHC^=HBK^

ΔHJC:ˆHCJ=90o−ˆGHCΔHJC:HCJ^=90o−GHC^ (tổng ba góc trong tam giác bằng 180o180o)

ˆABH=ˆABK−ˆHBK=90o−ˆHBKABH^=ABK^−HBK^=90o−HBK^ (BK⊥ABBK⊥AB)

Từ 3 điều trên suy ra ˆHCJ=ˆABHHCJ^=ABH^

Mà ΔBCF:ˆFBC=90o−ˆHCJΔBCF:FBC^=90o−HCJ^

ΔABE:ˆEAB=90o−ˆABHΔABE:EAB^=90o−ABH^

Từ 3 điều trên ⇒ˆFBC=ˆEAB⇒FBC^=EAB^

hay ˆCBA=ˆCABCBA^=CAB^

⇒ΔABC⇒ΔABC cân đỉnh CC

ΔABCΔABC cân đỉnh CC thì GHCKGHCK là hình thang cân.

18 tháng 10 2021

Cảm ơn bạn

18 tháng 12 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành

18 tháng 12 2021

a: Xét tứ giác BHCK có

M là trung điểm của BC

M là trung điểm của HK

Do đó: BHCK là hình bình hành