Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AKB=góc AHB=90 độ
=>AKHB nội tiếp đường tròn đường kính AB
=>Tâm là trung điểm của AB
b: Gọi giao của AH và BK là M
ABHK là tứ giác nội tiếp
=>góc AHK=góc ABK
=>góc AHK=góc ADE
=>HK//DE
a/ cm tứ giác ABKH nội tiếp đường tròn và xđ tâm của đường tròn đó :
Trong tứ giác ABHK có : góc AKB = góc AHB = 90 độ
và cùng nhìn cạnh AB => tứ giác ABHK nội tiếp
=> Tâm của đường tròn này nằm trên trung điểm của cạnh AB
b/ cm HK // DE:
Có : góc BED = góc BAD ( cùng chắn cung BD)
mà góc BAD = góc BKH ( tú giác ABHK nội tiếp)
=> góc BKH = góc BED mà ở vị trí đồng vị => HK // DE
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a) Ta có: \(\angle AKB=\angle AIB=90\Rightarrow AKIB\) nội tiếp
b) Trong (O) có DE là dây cung không đi qua O và M là trung điểm DE
\(\Rightarrow OM\bot DE\)
CEAD nội tiếp \(\Rightarrow\angle CED=\angle CAD\)
CEBD nội tiếp \(\Rightarrow\angle CDE=\angle CBE\)
mà \(\angle CAD=\angle CBE\) (AKIB nội tiếp)
\(\Rightarrow\angle CED=\angle CDE\Rightarrow\Delta CDE\) cân tại C mà M là trung điểm DE
\(\Rightarrow CM\bot DE\Rightarrow C,O,M\) thẳng hàng
c) AKIB nội tiếp \(\Rightarrow\angle IKB=\angle IAB=\angle DAB=\angle DEB\)
\(\Rightarrow\) \(IK\parallel DE\)
a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có
\(\widehat{HCD}=\widehat{ABD}\)
Do đó: ΔDHC\(\sim\)ΔDAB
Suy ra: DH/DA=DC/DB
hay \(DH\cdot DB=DA\cdot DC\)
a: A,E,D,B cùng thuộc (O)
=>AEDB nội tiếp
A,E,C,B cùng thuộc (O)
=>AECB nội tiếp
B,E,C,D cùng thuộc (O)
=>BECD nội tiếp
góc AHB=góc AKB=90 độ
=>AKHB nội tiếp
b: Đề sai rồi bạn