Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình bạn tự vẽ)
a) Ta có: \(\dfrac{AB}{BC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{BC}{BD}=\dfrac{9}{6+7,5}=\dfrac{2}{3}\)
Xét ΔABC và ΔCBD có:
Góc B chung
\(\dfrac{AB}{BC}=\dfrac{BC}{BD}\)\(\left(=\dfrac{2}{3}\right)\)
⇒ΔABC ∼ ΔCBD (c.g.c)
b) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ \(\dfrac{AB}{AC}=\dfrac{CB}{CD}\)\(=\dfrac{6}{7,5}=\dfrac{9}{CD}\)
⇒ \(CD=\dfrac{7,5.9}{6}\)\(=\dfrac{45}{4}=11,25\)
c) Theo câu a ta có: ΔABC ∼ ΔCBD
⇒ Góc BAC = góc BCD (1)
Xét ΔBCD có: \(\dfrac{BA}{AD}=\dfrac{BC}{CD}\)
Hay \(\dfrac{6}{7,5}=\dfrac{9}{11,25}\)\(=\dfrac{4}{5}\)
⇒ CA là phân giác góc BCD
⇒ Góc ACB= góc ACD (2)
Từ (1), (2) ⇒ góc BAC = 2 góc ACB
Sửa đề: AC=7,5
a: Sửa đề: ΔABC đồng dạng với ΔCBD
Xét ΔABC và ΔCBD có
BA/BC=CB/BD
góc B chung
=>ΔABC đồng dạng với ΔCBD
b: ΔABC đồng dạng với ΔCBD
=>AC/CD=AB/CB
=>7,5/CD=6/9=2/3
=>CD=11,25(cm)
a: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=8/5=1,6
=>BD=3,2cm; CD=4,8cm
b: Xét ΔDEB và ΔDCA có
góc DEB=góc DCA
góc EDB=góc CDA
=>ΔDEB đồng dạng với ΔDCA
Xét ΔABE và ΔADC có
góc AEB=góc ACD
góc BAE=góc DAC
=>ΔABE đồng dạng với ΔADC
c: ΔABE đồng dạng với ΔADC
=>AB/AD=AE/AC
=>AB*AC=AD*AE
d: góc ACB=góc AEB
=>ABEC nội tiếp
=>góc ABE+góc ACE=180 độ
a: Xét ΔABC và ΔCBD có
BC/BD=AB/BC
\(\widehat{B}\) chung
Do đo: ΔABC\(\sim\)ΔCBD
b: Ta có: ΔABC\(\sim\)ΔCBD
nên AC/CD=BC/BD
=>3,75/CD=2/3
=>CD=5,625(cm)