K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABM và ΔACN có

AB=AC
góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Mình xin phép sửa đề:

Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G

Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN

`------`

\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)

\(\text{CM | BM = CN}\)

\(\text{BM là đường trung tuyến}\)

`->`\(\text{MA = MC (1)}\)

\(\text{CN là đường trung tuyến}\)

`->`\(\text{NA = NB (2)}\)

`\Delta ABC` cân tại A

`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

`->`\(\text{NA = NB = MA = MC}\)

Xét `\Delta ABM` và `\Delta ACN`:

\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)

`=> \Delta ABM = \Delta ACN (c-g-c)`

`->`\(\text{BM = CN (2 cạnh tương ứng).}\)

loading...

3 tháng 6 2021

\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)

\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)

mà ABC= ACB(t/g ABC cân A)

\(\rightarrow ABM=ACN\)

Xét t/g ABM và t/g ACN

Có ^BAC chung

       AC= AB(t/g ABC cân A)

     ^ABM= ^ACN(cmt)

\(\rightarrow\)t/g ABM = t/g ACN(gcg)

3 tháng 6 2021

Các bạn giải giúp câu d với!

16 tháng 4 2017

Hình các bạn tự vẽ nhé !

a)VÌ \(\Delta ABC\)cân tại \(A\)có \(BM;CN\)là đường trung tuyến

\(\Rightarrow AN=BN=AM=CM=\frac{1}{2}AB=\frac{1}{2}AC\)

\(\Rightarrow\Delta ANM\)cân ( vì AN=AM )

Vì \(\Delta ANM;\Delta ABC\)cùng cân mà có \(\widehat{A}\)chung nên \(\widehat{ANM}=\widehat{AMN}=\widehat{ABC}=\widehat{ACB}\)(đpcm)

Vì \(\widehat{AMN};\widehat{ACB}\)là hai góc đồng vị mà \(\widehat{AMN}=\widehat{ACB}\)(chứng minh trên) nên MN song song với BC  (đpcm)

b) Vì G là giao điểm của BM và CN mà BM và CN là 2 đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)

\(\Rightarrow AG\)là đường trung tuyến của \(\Delta ABC\)từ đỉnh A xuống cạnh BC

VÌ trong tam giác cân , đường trung tuyến xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là đường trung trực ứng với cạnh đáy

nên \(AG⊥BC\)

Theo (a) \(BC\)song song với \(MN\)mà \(AG⊥BC\)nên \(AG⊥MN\)(đpcm)

a: Xét ΔBNC và ΔCMB có 

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó; ΔBNC=ΔCMB

b: Sửa đề: Cm ΔANM cân tại A

Xét ΔANM có AN=AM

nên ΔANM cân tại A

Xét ΔABC có

BM,CN lần lượt là các đường trung tuyến

BM cắt CN tại I

=>I là trọng tâm

=>AI là đường trung tuyến của ΔACB

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI vuông góc CB

=>AI là trung trực của BC

19 tháng 4 2022

a)Xét ΔBCM và ΔCBN có:
               BC chung
           góc NBC=góc MCB(ΔABC cân)
               BN=MC (gt)
 ⇨ΔBCM=ΔCBN (c-g-c)
⇨NC=MB (2 cạnh tương ứng)

a: Xét ΔNBC và ΔMCB có

NB=MC

góc NBC=góc MCB

BC chung

=>ΔNBC=ΔMCB

b: ΔNBC=ΔMCB

=>góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

mà AB=AC

nên AO là trung trực của BC

 

17 tháng 9 2023

a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.

Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.

Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.

b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BM và CN nên G là trọng tâm tam giác ABC. Do đó:

\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.

Vậy tam giác GBC cân tại G. 

28 tháng 8 2017

4 tháng 1 2023

dạ cảm ơn ạ