Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ABM=MBC=\frac{ABC}{2}\)(BM là p/g t/g ABC)
\(ACN=NCB=\frac{ACB}{2}\)(CN là p/g t/g ABC)
mà ABC= ACB(t/g ABC cân A)
\(\rightarrow ABM=ACN\)
Xét t/g ABM và t/g ACN
Có ^BAC chung
AC= AB(t/g ABC cân A)
^ABM= ^ACN(cmt)
\(\rightarrow\)t/g ABM = t/g ACN(gcg)
Hình các bạn tự vẽ nhé !
a)VÌ \(\Delta ABC\)cân tại \(A\)có \(BM;CN\)là đường trung tuyến
\(\Rightarrow AN=BN=AM=CM=\frac{1}{2}AB=\frac{1}{2}AC\)
\(\Rightarrow\Delta ANM\)cân ( vì AN=AM )
Vì \(\Delta ANM;\Delta ABC\)cùng cân mà có \(\widehat{A}\)chung nên \(\widehat{ANM}=\widehat{AMN}=\widehat{ABC}=\widehat{ACB}\)(đpcm)
Vì \(\widehat{AMN};\widehat{ACB}\)là hai góc đồng vị mà \(\widehat{AMN}=\widehat{ACB}\)(chứng minh trên) nên MN song song với BC (đpcm)
b) Vì G là giao điểm của BM và CN mà BM và CN là 2 đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)
\(\Rightarrow AG\)là đường trung tuyến của \(\Delta ABC\)từ đỉnh A xuống cạnh BC
VÌ trong tam giác cân , đường trung tuyến xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là đường trung trực ứng với cạnh đáy
nên \(AG⊥BC\)
Theo (a) \(BC\)song song với \(MN\)mà \(AG⊥BC\)nên \(AG⊥MN\)(đpcm)
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó; ΔBNC=ΔCMB
b: Sửa đề: Cm ΔANM cân tại A
Xét ΔANM có AN=AM
nên ΔANM cân tại A
Xét ΔABC có
BM,CN lần lượt là các đường trung tuyến
BM cắt CN tại I
=>I là trọng tâm
=>AI là đường trung tuyến của ΔACB
ΔABC cân tại A
mà AI là đường trung tuyến
nên AI vuông góc CB
=>AI là trung trực của BC
a)Xét ΔBCM và ΔCBN có:
BC chung
góc NBC=góc MCB(ΔABC cân)
BN=MC (gt)
⇨ΔBCM=ΔCBN (c-g-c)
⇨NC=MB (2 cạnh tương ứng)
a: Xét ΔNBC và ΔMCB có
NB=MC
góc NBC=góc MCB
BC chung
=>ΔNBC=ΔMCB
b: ΔNBC=ΔMCB
=>góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.
Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.
Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.
b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BM và CN nên G là trọng tâm tam giác ABC. Do đó:
\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.
Vậy tam giác GBC cân tại G.
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Mình xin phép sửa đề:
Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G
Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN
`------`
\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)
\(\text{CM | BM = CN}\)
\(\text{BM là đường trung tuyến}\)
`->`\(\text{MA = MC (1)}\)
\(\text{CN là đường trung tuyến}\)
`->`\(\text{NA = NB (2)}\)
`\Delta ABC` cân tại A
`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
`->`\(\text{NA = NB = MA = MC}\)
Xét `\Delta ABM` và `\Delta ACN`:
\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)
`=> \Delta ABM = \Delta ACN (c-g-c)`
`->`\(\text{BM = CN (2 cạnh tương ứng).}\)