Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
Vì $BD$ là tia phân giác góc $\widehat{B}$ nên:
$\frac{AD}{DC}=\frac{AB}{BC}$
$CE$ là tia phân giác $\widehat{C}$ nên:
$\frac{AE}{EB}=\frac{AC}{BC}$
Mà $AB=AC$ nên $\frac{AD}{DC}=\frac{AE}{EB}$. Theo định lý Talet đảo thì $ED\parallel BC$
Do đó $BEDC$ là hình thang. Mà $\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)
$\Rightarrow BEDC$ là htc.
2.
$BEDC$ là htc nên $BE=DC(1)$
$\frac{AD}{DC}=\frac{AB}{BC}\Rightarrow AD=\frac{AB.DC}{BC}$
$ED\parallel BC$ nên theo định lý Talet:
$\frac{ED}{BC}=\frac{AD}{AC}$
\(\Rightarrow ED=\frac{AD.BC}{AC}=\frac{AB.DC}{BC}.\frac{BC}{AC}=\frac{AB.DC}{BC}.\frac{BC}{AB}=DC(2)\)
Từ $(1);(2)\Rightarrow BE=DC=ED$
3.
Xét tam giác $DBC$ và $ECB$ có:
$\widehat{DCB}=\widehat{EBC}$
$DC=EB$
$BC$ chung
$\Rightarrow \triangle DBC=\triangle ECB$ (c.g.c)
$\Rightarrow \widehat{B_1}=\widehat{C_1}$
$\Rightarrow \triangle BOC$ cân tại $O$
Do đó trung tuyến $OI$ đồng thời là đường cao
$\Rightarrow OI\perp BC(*)$
Mặt khác:
$\widehat{B_1}=\widehat{D_1}$ (so le trong)
$\widehat{C_1}=\widehat{E_1}$
$\Rightarrow \widehat{D_1}=\widehat{E_1}$
$\Rightarrow \triangle OED$ cân tại $O$
Do đó trung tuyến $OJ$ đồng thời là đường cao
$\Rightarrow OJ\perp ED(**)$
Từ $(*); (**)$ mà $ED\parallel BC$ nên $O, I, J$ thẳng hàng.
AI cắt ED tại J', ta cm J' ≡ J
Từ tính chất tgiác đồng dạng ta có:
EJ'/BI = AE/AB = ED/BC = ED/2BI
=> EJ' = ED/2 => J' là trung điểm ED => J' ≡ J
Vậy A,I,J thẳng hàng
*OI cắt ED tại J" ta cm J" ≡ J
Hiển nhiên ta có:
OD/OB = ED/BC (tgiác ODE đồng dạng tgiác OBC)
Mặt khác:
^J"DO = ^OBI (so le trong), ^J"OD = ^IOB (đối đỉnh)
=> tgiác J"DO đồng dạng với tgiác IBO
=> J"D/IB = OD/OB = ED/BC = ED/ 2IB
=> J"D = ED/2 => J" là trung điểm ED => J" ≡ J
Tóm lại A,I,O,J thẳng hàng
a,Xét tam giác ACE và tam giác ABD có:
A chung
AEC=ADB(=90)
→ACE∼ABD(g−g)
b,ACE∼ABD
→AC/AB=AE/AD
→AD/AB=AE/AC
Xét tam giác ADE và tam giác ABC có:
A chung
AD/AB=AE/AC
→ADE∼ABC(c−g−c)
→AED=ACB
Ta có: DEH=90−AED
HBC=90−DCB
→DEH=HBC (Vì AED=DCB-cmt)
Xét tam giác EHD và tam giác HBC có:
EHD=BHC
DEH=HBC
→EDH∼BCH(g−g)
→HE/HB=HD/HC
hay HE.HC=HB.HD
a, Ta có: góc ABC=góc ACB (t/g ABC cân tại A)
=> góc ABC/2 = góc ACB/2
=>góc B1 = góc B2 = góc C1 = góc C2
Xét t/g ADB và t/g AEC có:
góc B1 = góc C1 (cmt)
AB=AC (t/g ABC cân tại A)
góc A chung
=>t/g ADB = t/g AEC (g.c.g)
b, Vì t/g ADB = t/g AEC (câu a) => BD=CE (*), AE=AD
=> t/g AED cân tại A
=> góc AED = góc ADE = \(\frac{180^o-\widehat{A}}{2}\) (1)
Mà góc ABC=góc ACB = \(\frac{180^o-\widehat{A}}{2}\) (2)
Từ (1) và (2) => góc AED = góc ABC
Mà góc AED và góc ABC là cặp góc đồng vị
=> ED // BC (**)
Từ (*) và (**) => BEDC là hình thang cân
c, Vì BEDC là hình thang cân => BE=DC (3)
Từ (**) => góc EDB = góc B2 (so le trong)
Mà góc B1 = góc B2 (gt)
=>góc EDB = góc B1
=>t/g BED cân tại E
=>BE=ED (4)
Từ (3),(4) => BE=ED=DC
P/s: hình chỉ mang tính chất minh họa :v
ai giúp mình câu e với ạ