K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Lời giải:

1. 

Vì $BD$ là tia phân giác góc $\widehat{B}$ nên:

$\frac{AD}{DC}=\frac{AB}{BC}$

$CE$ là tia phân giác $\widehat{C}$ nên:
$\frac{AE}{EB}=\frac{AC}{BC}$

Mà $AB=AC$ nên $\frac{AD}{DC}=\frac{AE}{EB}$. Theo định lý Talet đảo thì $ED\parallel BC$

Do đó $BEDC$ là hình thang. Mà $\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)

$\Rightarrow BEDC$ là htc.

2.

$BEDC$ là htc nên $BE=DC(1)$

$\frac{AD}{DC}=\frac{AB}{BC}\Rightarrow AD=\frac{AB.DC}{BC}$

$ED\parallel BC$ nên theo định lý Talet:

$\frac{ED}{BC}=\frac{AD}{AC}$

\(\Rightarrow ED=\frac{AD.BC}{AC}=\frac{AB.DC}{BC}.\frac{BC}{AC}=\frac{AB.DC}{BC}.\frac{BC}{AB}=DC(2)\)

Từ $(1);(2)\Rightarrow BE=DC=ED$

3.

Xét tam giác $DBC$ và $ECB$ có:

$\widehat{DCB}=\widehat{EBC}$ 

$DC=EB$

$BC$ chung

$\Rightarrow \triangle DBC=\triangle ECB$ (c.g.c)

$\Rightarrow \widehat{B_1}=\widehat{C_1}$

$\Rightarrow \triangle BOC$ cân tại $O$

Do đó trung tuyến $OI$ đồng thời là đường cao 

$\Rightarrow OI\perp BC(*)$

Mặt khác:

$\widehat{B_1}=\widehat{D_1}$ (so le trong)

$\widehat{C_1}=\widehat{E_1}$

$\Rightarrow \widehat{D_1}=\widehat{E_1}$

$\Rightarrow \triangle OED$ cân tại $O$

Do đó trung tuyến $OJ$ đồng thời là đường cao 

$\Rightarrow OJ\perp ED(**)$

Từ $(*); (**)$ mà $ED\parallel BC$ nên $O, I, J$ thẳng hàng.

 

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Hình vẽ: