Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S=1+3^1+3^2+3^3+...+3^30.Tìm chữ số tận cùng của S,từ đó suy ra S không phải là số chính phương.
3S = 3 +3^2 +3^3+...+3^31 => 2S= 3^31-1
3^31= [3^4]^7 x 3^3 = [...1] ^7 x 27 = [...1] x 27 = [...7] => 2S có tận cùng là 7-1 = 6
=> S có tc là 3 hoặc 8 mà scp ko có tc là 3 hoặc 8 => S ko phải là scp
Cho S = 1+31+32+33+...+330
hãy tìm chữ số tân cùng của S ,từ đó suy ra S k phải là số chính phương .
\(a=3+3^2+3^3+.....+3^{2017}+3^{2018}\)
\(3a=3+3^2+3^3+......+3^{2019}\)
\(3a-a=\left(3+3^2+....+3^{2019}\right)-\left(3+3^2+....+3^{2018}\right)\)
\(a=3^{2019}\)
\(\Rightarrow3^{2019}=\left(3^3\right)^{673}\)
\(a=\left(....7\right)^{673}\)
\(\Rightarrow\)tận cùng là 7