K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

còn cái nịt

27 tháng 6 2021

pt. 2 mghiemej pb

`<=>Delta>0`

`<=>(m+2)^2-4(3m-6)>0`

`<=>m^2+4m+4-12m+24>0`

`<=>m^2-8m+28>0`

`<=>(m-4)^2+8>0` luôn đúng

Áp dụng vi-ét ta có:`x_1+x_2=m+2,x_1.x_2=-3m-6`

`đk:x_1,x_2>=0=>x_1+x_2,x_1.x_2>=0`

`=>m+2>=0,3m-6>=0`

`<=>m>=2`

`pt<=>x_1+x_2+2sqrt(x_1.x_2)=4`

`<=>m+2+2sqrt{3m-6}=4`

`<=>3m+6+6sqrt(3m-6)=12`

`<=>3m-6+6sqrt(3m-6)=0`

`<=>3m-6=0`

`<=>m=2(tmđk)`

Vậy m=2

27 tháng 6 2021

Bạn làm sai rồi

m=2

Pt<=>x^2-4x=0

=>x=0,x=4

=>tmđk

NV
3 tháng 5 2021

\(\Delta=\left(m+3\right)^2-4\left(m-1\right)=\left(m+1\right)^2+12>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m-1\end{matrix}\right.\)

\(x_1< -\dfrac{1}{4}< x_2\Leftrightarrow\left(x_1+\dfrac{1}{4}\right)\left(x_2+\dfrac{1}{4}\right)< 0\)

\(\Leftrightarrow x_1x_2+\dfrac{1}{4}\left(x_1+x_2\right)+\dfrac{1}{16}< 0\)

\(\Leftrightarrow m-1+\dfrac{1}{4}\left(m+3\right)+\dfrac{1}{16}< 0\)

\(\Leftrightarrow20m-3< 0\Rightarrow m< \dfrac{3}{20}\)

8 tháng 6 2018

Đáp án A

3 tháng 6 2021

 

Theo viet ta có

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)

Ta có: \(x_1^2+x_1-x_2=5-2m\)

\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\)

\(\Leftrightarrow\left(x_1^2+x_1\right)-\left(x_2-x_1x_2\right)=5\)

\(\Leftrightarrow x_1\left(x_1+1\right)-x_2\left(x_1+1\right)=5\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+1\right)=5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\end{matrix}\right.\)

-Với \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\)             \(\Leftrightarrow\left\{{}\begin{matrix}x_2=3\\x_1=4\end{matrix}\right.\)

\(\Rightarrow x_1x_2=12=-2m\)

\(\Rightarrow m=-6\)

-Với \(\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\)              \(\Leftrightarrow\left\{{}\begin{matrix}x_2=-5\\x_1=0\end{matrix}\right.\)

\(\Rightarrow x_1.x_2=0=-2m\)

\(\Rightarrow m=0\)

Vậy \(m=0;m=-6\)

-Chúc bạn học tốt-

4 tháng 6 2021

Thank bạn 

 

a: Thay m=1 vào pt, ta được:

\(x^2-x-2=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16\)

\(=\left(m-4\right)^2\)

Để phươg trình có hai nghiệm phân biệt thì m-4<>0

hay m<>4

Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(-m\right)^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

10 tháng 3 2021

Ta có: \(\Delta\) = m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)2 \(\ge\) 0

\(\Rightarrow\) x1 = \(\dfrac{m-\left(m-2\right)}{2}=1\); x2 = \(\dfrac{m+m-2}{2}=m-1\)

Ta có: |x1| + |x2| = 4

\(\Leftrightarrow\) 1 + |m - 1| = 4

\(\Leftrightarrow\) |m - 1| = 3

\(\Leftrightarrow\) \(\left[{}\begin{matrix}m-1=3\\m-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt!

Δ=(-5)^2-4(m-1)

=25-4m+4=-4m+29

Để PT có 2 nghiệm pb thì -4m+29>0

=>m<29/4

2x2=căn x1

=>4x2^2=x1

x1+x2=5

=>x1=5-x2

=>4x^2=5-x2

=>x2=1

=>x1=4

x1x2=m-1

=>m-1=4

=>m=5