Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt. 2 mghiemej pb
`<=>Delta>0`
`<=>(m+2)^2-4(3m-6)>0`
`<=>m^2+4m+4-12m+24>0`
`<=>m^2-8m+28>0`
`<=>(m-4)^2+8>0` luôn đúng
Áp dụng vi-ét ta có:`x_1+x_2=m+2,x_1.x_2=-3m-6`
`đk:x_1,x_2>=0=>x_1+x_2,x_1.x_2>=0`
`=>m+2>=0,3m-6>=0`
`<=>m>=2`
`pt<=>x_1+x_2+2sqrt(x_1.x_2)=4`
`<=>m+2+2sqrt{3m-6}=4`
`<=>3m+6+6sqrt(3m-6)=12`
`<=>3m-6+6sqrt(3m-6)=0`
`<=>3m-6=0`
`<=>m=2(tmđk)`
Vậy m=2
\(\Delta=\left(m+3\right)^2-4\left(m-1\right)=\left(m+1\right)^2+12>0;\forall m\)
\(\Rightarrow\) Pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+3\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1< -\dfrac{1}{4}< x_2\Leftrightarrow\left(x_1+\dfrac{1}{4}\right)\left(x_2+\dfrac{1}{4}\right)< 0\)
\(\Leftrightarrow x_1x_2+\dfrac{1}{4}\left(x_1+x_2\right)+\dfrac{1}{16}< 0\)
\(\Leftrightarrow m-1+\dfrac{1}{4}\left(m+3\right)+\dfrac{1}{16}< 0\)
\(\Leftrightarrow20m-3< 0\Rightarrow m< \dfrac{3}{20}\)
Theo viet ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-2m\end{matrix}\right.\)
Ta có: \(x_1^2+x_1-x_2=5-2m\)
\(\Leftrightarrow x_1^2+x_1-x_2=5+x_1x_2\)
\(\Leftrightarrow\left(x_1^2+x_1\right)-\left(x_2-x_1x_2\right)=5\)
\(\Leftrightarrow x_1\left(x_1+1\right)-x_2\left(x_1+1\right)=5\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+1\right)=5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\end{matrix}\right.\)
-Với \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1+1=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=3\\x_1=4\end{matrix}\right.\)
\(\Rightarrow x_1x_2=12=-2m\)
\(\Rightarrow m=-6\)
-Với \(\left\{{}\begin{matrix}x_1-x_2=5\\x_1+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_2=-5\\x_1=0\end{matrix}\right.\)
\(\Rightarrow x_1.x_2=0=-2m\)
\(\Rightarrow m=0\)
Vậy \(m=0;m=-6\)
-Chúc bạn học tốt-
a: Thay m=1 vào pt, ta được:
\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
b: \(\text{Δ}=\left(-m\right)^2-4\left(2m-4\right)\)
\(=m^2-8m+16\)
\(=\left(m-4\right)^2\)
Để phươg trình có hai nghiệm phân biệt thì m-4<>0
hay m<>4
Theo đề, ta có: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(-m\right)^2-2\left(2m-4\right)\)
\(=m^2-4m+8\)
\(=\left(m-2\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi m=2
Ta có: \(\Delta\) = m2 - 4(m - 1) = m2 - 4m + 4 = (m - 2)2 \(\ge\) 0
\(\Rightarrow\) x1 = \(\dfrac{m-\left(m-2\right)}{2}=1\); x2 = \(\dfrac{m+m-2}{2}=m-1\)
Ta có: |x1| + |x2| = 4
\(\Leftrightarrow\) 1 + |m - 1| = 4
\(\Leftrightarrow\) |m - 1| = 3
\(\Leftrightarrow\) \(\left[{}\begin{matrix}m-1=3\\m-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt!
Δ=(-5)^2-4(m-1)
=25-4m+4=-4m+29
Để PT có 2 nghiệm pb thì -4m+29>0
=>m<29/4
2x2=căn x1
=>4x2^2=x1
x1+x2=5
=>x1=5-x2
=>4x^2=5-x2
=>x2=1
=>x1=4
x1x2=m-1
=>m-1=4
=>m=5