Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=-5 thì pt sẽ là x^2-5x-6=0
=>x=6 hoặc x=-1
b:
Δ=(-5)^2-4(m-1)=25-4m+4=-4m+29
Để pt có hai nghiệm thì -4m+29>=0
=>m<=29/4
x1-x2=3
=>(x1-x2)^2=9
=>(x1+x2)^2-4x1x2=9
=>5^2-4(m-1)=9
=>4(m-1)=25-9=16
=>m-1=4
=>m=5(nhận)
c: 2x1-3x2=5 và x1+x2=5
=>x1=4 và x2=1
x1*x2=m-1
=>m-1=4
=>m=5(nhận)
a: Khi m=0 thì (1) sẽ là x^2-5x+6=0
=>x=2 hoặc x=3
b: 2x1+3x2=13 và x1+x2=m+5
=>2x1+2x2=2m+10 và 2x1+3x2=13
=>x2=13-2m-10=3-2m và x1=m+5-3+2m=3m+2
x1x2=-m+6
=>(-2m+3)(3m+2)=-m+6
=>-6m^2-4m+9m+6=-m+6
=>-6m^2+6m=0
=>m=0 hoặc m=1
a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)
pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\)
Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)
b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)
Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).
Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)
Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
Làm câu b)
Để phương trình có hai nghiệm phân biệt:
\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)
Áp dụng định lí Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)
Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)
Từ 1, 2 ta có:
\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)
Vậy ...
a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)
Với m = 0, phương trình (1) trở thành:
x 2 − 2 x − 1 = 0 Δ ' = 2 ; x 1 , 2 = 1 ± 2
Vậy với m = 2 thì nghiệm của phương trình (1) là x 1 , 2 = 1 ± 2
b) Δ ' = m + 2
Phương trình (1) có hai nghiệm phân biệt ⇔ m > − 2
Áp dụng hệ thức Vi-ét, ta có: x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1
Do đó:
1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2
Kết hợp với điều kiện ⇒ m ∈ 1 ; − 3 2 là các giá trị cần tìm.
a: Khi m=1 thì phương trình sẽ là:
\(x^2-2x+1-1=0\)
=>x^2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có 2 nghiệm thì -4m+8>=0
=>-4m>=-8
=>m<=2
\(x_1^3+x_2^3< =15\)
=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)< =15\)
=>\(2^3-3\cdot2\cdot\left(m-1\right)< =15\)
=>\(8-6m+6< =15\)
=>-6m+14<=15
=>-6m<=1
=>\(m>=-\dfrac{1}{6}\)
=>\(-\dfrac{1}{6}< =m< =2\)