K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=2^2-4(m-3)

=4-4m+12=16-4m

Để phương trình có hai nghiệm thì 16-4m>=0

=>m<=4

m(x1^3+x2^3)+(x1*x2)^2=9

=>m[(x1+x2)^3-3x1x2(x1+x2)]+(m-3)^2=9

=>m[(-2)^3-3(m-3)*(-2)]+(m-3)^2=9

=>m[-8+6(m-3)]+(m-3)^2=9

=>m^2-6m+9-9+m[-8+6m-18]=0

=>m^2-6m+m[6m-26]=0

=>m^2-6m+6m^2-26m=0

=>7m^2-32m=0

=>m=0(nhận) hoặc m=32/7(loại)

12 tháng 4 2023

△ = 4-4m+12 = 16-4m

ptr có 2 ngh \(x_1;x_2\) ⇔△≥0 ⇔m≤4

Theo viet: \(x_1+x_2=-2;x_1x_2=m-3\)

Ta có\(m\left(x_1^3+x_2^3\right)+x_1^2x_2^2=9\\ \Leftrightarrow m\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)+x_1^2x_2^2=9\\ \Leftrightarrow m\left(-2\right)\left(x_1+x_2\right)^2-3x_1x_2m\left(-2\right)+\left(x_1x_2\right)^2=9\\ \Leftrightarrow-8m+6m\left(m-3\right)+\left(m-3\right)^2=9\\ \Leftrightarrow6m^2-18m-8m+m^2-6m+9=9\Leftrightarrow7m^2-32m=0\\ \)

         ⇔m=0(tm) hoặc m=32/7 (loại)

kl....

Δ=2^2-4(m-3)

=4-4m+12=16-4m

Để phương trình có hai nghiệm phân biệt thì 16-4m>0

=>m<4

m(x1^3+x2^3)+(x1*x2)^2=9

=>m[(x1+x2)^3-3x1x2(x1+x2)]+(m-3)^2=9

=>m[(-2)^3-3(m-3)*(-2)]+(m-3)^2=9

=>m[-8+6(m-3)]+(m-3)^2=9

=>m^2-6m+9-9+m[-8+6m-18]=0

=>m^2-6m+m[6m-26]=0

=>m^2-6m+6m^2-26m=0

=>7m^2-32m=0

=>m=0(nhận) hoặc m=32/7(loại)

11 tháng 4 2023

vậy nếu cho x1x2 là hai nghiệm thì sao ạ ( không có phân biệt)

29 tháng 10 2023

a: Khi m=1 thì phương trình sẽ là:

\(x^2-2x+1-1=0\)

=>x^2-2x=0

=>x(x-2)=0

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2\right)^2-4\left(m-1\right)=4-4m+4=-4m+8\)

Để phương trình có 2 nghiệm thì -4m+8>=0

=>-4m>=-8

=>m<=2

\(x_1^3+x_2^3< =15\)

=>\(\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)< =15\)

=>\(2^3-3\cdot2\cdot\left(m-1\right)< =15\)

=>\(8-6m+6< =15\)

=>-6m+14<=15

=>-6m<=1

=>\(m>=-\dfrac{1}{6}\)

=>\(-\dfrac{1}{6}< =m< =2\)

NV
22 tháng 1 2022

\(\Delta'=1-\left(m-3\right)=4-m>0\Rightarrow m< 4\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)

Do \(x_1+x_2=2\Rightarrow x_2=2-x_1\)

Ta có:

\(x_1^2+x_1x_2=2x_2-12\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)=2\left(2-x_1\right)-12\)

\(\Leftrightarrow2x_1=4-2x_1-12\)

\(\Leftrightarrow4x_1=-8\Rightarrow x_1=-2\Rightarrow x_2=4\)

Thế vào \(x_1x_2=m-3\Rightarrow m-3=-8\)

\(\Rightarrow m=-5\)

Δ=(-2)^2-4(m-3)

=4-4m+12=-4m+16

Để pt có hai nghiệm thì -4m+16>=0

=>-4m>=-16

=>m<=4

x1^2+x2^2-x1x2<7

=>(x1+x2)^2-3x1x2<7

=>2^2-3(m-3)<7

=>4-3m+9<7

=>-3m+13<7

=>-3m<-6

=>m>2

=>2<m<=4

17 tháng 12 2021

a: Thay m=-3 vào (1), ta được:

\(x^2-2x-3=0\)

=>(x-3)(x+1)=0

hay x∈{3;-1}

12 tháng 2 2019

viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn

23 tháng 2 2022

a, Thay m=0 vào pt ta có:

\(x^2-x+1=0\)

\(\Rightarrow\) pt vô nghiệm 

b, Để pt có 2 nghiệm thì \(\Delta\ge0\)

\(\Leftrightarrow\left(-1\right)^2-4.1\left(m+1\right)\ge0\\ \Leftrightarrow1-4m-4\ge0\\ \Leftrightarrow-3-4m\ge0\\ \Leftrightarrow4m+3\le0\\ \Leftrightarrow m\le-\dfrac{3}{4}\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1x_2\left(x_1x_2-2\right)=3\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2=3.1\\ \Leftrightarrow\left(m+1\right)^2-2\left(m+1\right)-3=0\\ \Leftrightarrow\left[{}\begin{matrix}m+1=3\\m+1=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)