K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1                                              

b) Phương trình (1) có hai nghiệm  x 1 , x 2  khi và chỉ khi  Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2

Theo Vi-et , ta có:  x 1 + x 2 = m          1 x 1 . x 2 = m 2 − 2 2    2

Theo đề bài ta có:  A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2

Do  − 2 ≤ m ≤ 2  nên  m + 2 ≥ 0 m − 3 ≤ 0 . Suy ra  A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4

Vậy  MaxA = 25 4  khi  m = 1 2 .

a: Thay m=3 vào pt, ta được:

\(x^2-2\cdot\left(3-1\right)x+3^2-2\cdot3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=1 hoặc x=3

b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-2m\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Thay x=-2 vào pt, ta được:

\(\left(-2\right)^2-2\cdot\left(-2\right)\cdot\left(m-1\right)+m^2-2m=0\)

\(\Leftrightarrow m^2-2m+4+4\left(m-1\right)=0\)

\(\Leftrightarrow m^2-2m+4+4m-4=0\)

=>m(m+2)=0

=>m=0 hoặc m=-2

Theo hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2-2=2\cdot\left(-1\right)=-2\\x_2-2=2\cdot\left(-3\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=0\\x_2=-4\end{matrix}\right.\)

c: \(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-2m\right)=4\)

\(\Leftrightarrow4m^2-8m+4-2m^2+4m-4=0\)

\(\Leftrightarrow2m^2-4m=0\)

=>2m(m-2)=0

=>m=0 hoặc m=2

5 tháng 2 2022

em cảm ơn ạ

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

9 tháng 2 2023

a)

\(x=-2\) là nghiệm của phương trình

\(\Rightarrow\left(-2\right)^2-\left(-2\right).\left(m-1\right).\left(-2\right)-3=0\)

\(\Leftrightarrow4+4\left(m-1\right)-3=0\)

\(\Leftrightarrow4\left(m-1\right)=-1\)

\(\Leftrightarrow m-1=-\dfrac{1}{4}\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

\(x^2-2\left(m-1\right)x-3=0\)

\(\Leftrightarrow x^2+\dfrac{1}{2}x-3=0\)

\(\Leftrightarrow2x^2+x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

b)

\(\Delta'=\left(m-1\right)^2+12x>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)

Có:

 \(Q=x_1^3x_2+x_1x_2^3-5x_1x_2\)

\(=x_1x_2.\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)

\(=-3\left[4\left(m-1\right)^2+6\right]+15\)

\(=-12\left(m-1\right)^2-3\)

Mà \(-12\left(m-1\right)^2\le0\)

\(\Rightarrow-12\left(m-1\right)^2-3\le-3\)

\(Max_Q=-3\Leftrightarrow m-1=0\Leftrightarrow m=1\).

 

9 tháng 2 2023

`a)` Thay `x=-2` vào ptr có:

   `(-2)^2-2(m-1).(-2)-3=0<=>m=3/4`

Thay `m=3/4` vào ptr có: `x^2-2(3/4-1)x-3=0<=>x^2+1/2x-3=0`

             `<=>2x^2+x-6=0<=>(x+2)(2x-3)=0<=>[(x=-2),(x=3/2):}`

`b)` Ptr có nghiệm `<=>\Delta' >= 0`

            `<=>[-(m-1)]^2+3 >= 0<=>(m-1)^2+3 >= 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1 .x_2=c/a=-3):}`

Có:`Q=x_1 ^3 x_2+x_1 x_2 ^3 -5x_1 x_2`

`<=>Q=x_1 x_2(x_1 ^2+x_2 ^2)-5x_1 x_2`

`<=>Q=x_1 x_2[(x_1+x_2)^2-2x_1 x_2]-5x_1 x_2`

`<=>Q=-3[(2m-2)^2-2.(-3)]-5.(-3)`

`<=>Q=-3(2m-2)^2-18+15`

`<=>Q=-3(2m-2)^2-3`

Vì `-3(2m-2)^2 <= 0<=>-3(2m-2)^2-3 <= -3 AA m`

  `=>Q <= -3 AA m`

Dấu "`=`" xảy ra `<=>2m-2=0<=>m=1`

Vậy GTLN của `Q` là `-3` khi `m=1`

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi mb) tìm m để 3.x1 + 2.x2 = 5m -16c) cho A= x1² + x2² + 6.x1.x2c.1) tìm m để A = -44c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.f) tìm m để phương...
Đọc tiếp

Cho phương trình x² - 2(m-4)x + 2m - 20 = 0 (*)

a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m

b) tìm m để 3.x1 + 2.x2 = 5m -16

c) cho A= x1² + x2² + 6.x1.x2

c.1) tìm m để A = -44

c.2) tìm giá trị nhỏ nhất của A và giá trị tương ứng của m.

d) tìm m để phương trình có hai nghiệm có hai nghiệm đối nhau.

e) tìm m để phương trình có hai nghiệm là hai số nghịch đảo của nhau.

f) tìm m để phương trình có hai nghiệm có hai nghiệm trái dấu.

g) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dấu.

h) tìm m để phương trình có hai nghiệm có hai nghiệm cùng dương.

i) tìm m để phương trình có hai nghiệm có hai nghiệm cùng âm.

j) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.

k) cho B= x1² + x2² - 22.x1.x2 - x1².x2²

l) tìm m để phương trình có một nghiệm x1=2. Tìm nghiệm còn lại.

m) tìm m để x1³ + x2³ <0

n) lập phương trình có 2 nghiệm gấp đôi hai nghiệm của phương trình (*)

 

3
1 tháng 2 2022

TL :

Đề sai

\(x1^2\)là số gì

HT

1 tháng 2 2022

Ý bạn ấy là \(x_1^2\)nhưng bạn ấy chưa biết chỗ để đánh chỉ số dưới. Bạn nhấn vào cái biểu tượng x2 ở chỗ khung điều chỉnh thì con trỏ hạ xuống để bạn gõ chỉ số dưới. Xong rồi thì nhấn vào biểu tượng đó lần nữa.

23 tháng 5 2022

Ptr có nghiệm `<=>\Delta' >= 0`

                       `<=>[-(m+1)]^2-(m^2+4) >= 0`

                       `<=>m^2+2m+1-m^2-4 >= 0`

                       `<=>m >= 3/2`

Với `m >= 3/2`, áp dụng Vi-ét có:`{(x_1+x_2=[-b]/a=2m+2),(x_1.x_2=c/a=m^2+4):}`

Ta có:`C=x_1+x_2-x_1.x_2+3`

`<=>C=2m+2-m^2-4+3`

`<=>C=-m^2+2m+1`

`<=>C=-(m^2-2m+1)+2`

`<=>C=-(m-1)^2+2`

 Vì `-(m-1)^2 <= 0 AA m >= 3/2`

`<=>-(m-1)^2+2 <= 2 AA m >= 3/2`

Dấu "`=`" xảy ra`<=>(m-1)^2=0<=>m=1` (ko t/m)

Vậy không tồn tại `m` để `C` có `GTLN`

12 tháng 11 2018

Đáp án D

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined

8 tháng 7 2023

a) Phương trình có hai nghiệm phân biệt khi: 

\(\Delta=9-4\left(m+1\right)>0\)  \(\Leftrightarrow m< \dfrac{5}{4}\)

Vậy \(\ m< \dfrac{5}{4}\) thì pt có hai nghiệm phân biệt.

b) Áp dụng hệ thức viet có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m+1\end{matrix}\right.\)

\(P=\left(x_1+x_2\right)^2-4x_1.x_2+7m+5.x_1x_2\)

\(=9-4\left(m+1\right)+7m+5\left(m+1\right)\)

\(=8m+10\)

Không tồn tại giá trị lớn nhất. Em xem lại đề

12 tháng 7 2023

Trên đó em ko hề có ghi là tìm m để pt có 2 nghiệm phân biệt. Vậy nên phải là m \(\le\dfrac{5}{4}\). KQ: Giá trị lớn nhất của P = 20 khi m = \(\dfrac{5}{4}\)