Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Tọa độ A là:
y=0 và 4x+m-3=0
=>x=(-m+3)/4 và y=0
=>OA=|m-3|/4
Tọa độ B là:
x=0 và y=m-3
=>OB=|m-3|
Theo đề, ta có: 1/2*(m-3)^2/4=9
=>(m-3)^2/4=18
=>(m-3)^2=72
=>\(m=\pm6\sqrt{2}+3\)
2:
PTHĐGĐ là:
x^2-4x-m+3=0
Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4
Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0
=>m>-1
(4-x1)(x2-1)=2
=>4x2-4-x1x2+1=2
=>x2(x1+x2)-3-(-m+3)=2
=>x2*4-3+m-3=2
=>x2*4=2-m+6=8-m
=>x2=2-1/2m
=>x1=4-2+1/2m=1/2m+2
x1*x2=-m+3
=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2
=>-m+3-4+1/4m^2=0
=>1/4m^2-m-1=0
=>m^2-4m-4=0
=>\(m=2\pm2\sqrt{2}\)
a) pt hoành độ giao điểm: \(x^2-2x+3-m^2=0\)
Để đường thẳng d cắt (P) tại 2 điểm phân biệt thì \(\Delta'>0\)
\(\Delta'=1+m^2-3\Rightarrow m^2-2>0\Rightarrow\left|m\right|>\sqrt{2}\)
b) Gọi giao điểm là \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)
\(\Rightarrow A\left(x_1,x_1^2\right);B\left(x_2,x_2^2\right)\)
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3-m^2\end{matrix}\right.\)
Theo đề: \(y_1-y_2=8\Rightarrow x_1^2-x_2^2=8\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=8\)
\(\Rightarrow x_1-x_2=4>0\)
Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4m^2-8\)
\(\Rightarrow x_1-x_2=\sqrt{4m^2-8}\left(x_1-x_2>0\right)\Rightarrow4=\sqrt{4m^2-8}\)
\(\Rightarrow4m^2-8=16\Rightarrow m=\pm\sqrt{6}\)
Phương trình hoành độ giao điểm của (P) và (d) : \(\frac{1}{4}.x^2=mx+1\) (1)
<=> x2 = 4mx + 4 <=> x2 - 4mx - 4 = 0
\(\Delta\)' = (-2m)2 + 4 = 4m2 + 4 \(\ge\) 4 > 0 với mọi m
=> (1) luôn có 2 nghiệm phân biệt
Vậy (P) luôn cắt (d) tại 2 điểm phân biệt
b) Gọi 2 nghiệm đó là x1; x2
Theo hệ thức Vi ét có:
x1 + x2 = 4m
x1 x2 = - 4 < 0
=> x1; x2 trái dấu .
A; B là 2 giao điểm => A (x1; mx1 + 1); B(x2; mx2 + 1) . Giả sử x1 < 0 < x2
+) A; B nằm về hai phía của trục tung do x1; x2 trái dấu .
Gọi H; K lần lượt là hình chiếu của A; B xuống Ox => H(x1; 0); K(x2; 0)
Khi đó S OAB = S AHKB - SAHO - SBKO
S AHKB = (AH + BK). HK : 2 = (mx1 + 1 +mx2 + 1 ) .(- x1 + x2) : 2 = \(\frac{\left(m\left(x_1+x_2\right)+2\right)\left(x_2-x_1\right)}{2}=\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)
SAHO = AH.HO : 2 = (mx1 + 1). (-x1) : 2 = \(\frac{-mx^2_1-x_1}{2}\)
SBKO = BK.KO : 2 = (mx2 + 1). x2 : 2 = \(\frac{mx^2_2+x_2}{2}\)
Vậy SOAB = \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)- \(\frac{-mx^2_1-x_1}{2}\) - \(\frac{mx^2_2+x_2}{2}\)
= \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)+m\left(x_1^2-x_2^2\right)+x_1-x_2}{2}=\frac{x_2-x_1}{2}\)
ta có: \(\left(x_2-x_1\right)^2=x_2^2-2x_2x_1+x_1^2=\left(x_1+x_2\right)^2-4x_1.x_2\)
= (4m)2 - 4.(-4) = 16m2 + 16
=> x2 - x1 = \(\sqrt{16m^2+16}=4.\sqrt{m^2+1}\)
Vậy SOAB = \(4.\sqrt{m^2+1}\)
CÁI ĐỀ NÀY
AI GIÚP TÔI ĐƯỢC KHÔNG CHIỀU MAI TỚ PHẢI NỘP ÙI PLEASE~~~~~!!
BÀI 3:Xác định tham số m để hàm số y=(m^2 - 4)x-5 nghịch biến
Xác định tham số m để hàm số y=(m^2 - 1)x+2 đồng biến với mọi x>0
BÀI 6 Cho đường thẳng (d) y=-x+2 và parabol P y=1/2.x^2
a)tìm giá trị m để điểm M(m;m-1) nằm trên (d).Với m vừa tìm được chứng tỏ điểm M không thuộc P
b) vẽ P và (d) trên cùng mặt phẳng tọa độ và tìm tọa độ giao điểm của
chúng
BÀI 4:
TRONG mặt phẳng tọa độ Oxy , cho parabol P: y=-x^2
a) vẽ đồ thị P
b) gọi A và B là hai điểm thuộc P có hoành độ lần lượt là 1 , -2 .Lập phuơng trình đường thẳng AB
c) tìm phương trình đường thẳng (d) song song với đường thẳng AB và tiếp xúc với P