Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)
Tổng và tích hai nghiệm xa, xb là:
xa + xb = -m
xa . xb = -1
Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2
1) Phương trình hoành độ giao điểm của (P) và (d) là:
\(-x^2=mx-1\)
\(\Leftrightarrow-x^2-mx+1=0\)
a=-1; b=-m; c=1
Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m
2) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3=-4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+4=0\)
\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)+4=0\)
\(\Leftrightarrow-m^3-3m+4=0\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow m^3-m+4m-4=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)
\(\Leftrightarrow m-1=0\)
hay m=1
a: Phương trình hoành độ giao điểm là:
x^2-mx-4=0
a*c<0
=>(d) luôn cắt (P) tại hai điểm phân biệt
c: x1^2+mx2=6m-5
=>x1^2+x2(x1+x2)=6m-5
=>(x1+x2)^2-x1x2=6m-5
=>m^2-(-4)-6m+5=0
=>m^2-6m+9=0
=>m=3
1) Phương trình hoành độ của (P) và (d) là:
\(-x^2=mx-1\)
\(\Leftrightarrow-x^2-mx+1=0\)
a=-1; b=-m; c=1
Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m
2) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3=-4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=-4\)
\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)=-4\)
\(\Leftrightarrow-m^3-3m+4=0\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow m^3-m+4m-4=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)
\(\Leftrightarrow m-1=0\)
hay m=1
a: Khi m=2 thì \(y=-3x+2^2=-3x+4\)
Phương trình hoành độ giao điểm là:
\(x^2=-3x+4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)
Thay x=-4 vào (P), ta được:
\(y=\left(-4\right)^2=16\)
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: (d) cắt (P) tại A(-4;16) và B(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=-3x+m^2\)
=>\(x^2+3x-m^2=0\)
\(\text{Δ}=3^2-4\cdot1\cdot\left(-m^2\right)=4m^2+9>=9>0\forall m\)
=>(d) luôn cắt (P) tại hai điểm phân biệt
kiểm tra lại đề nhé lỗi quá