Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này sử dựng định lý viet để chứng minh:
- Gọi phương trình đường thẳng (d) có hệ số góc a có dạng : \(y=ax+b\left(a\ne0\right)\); \(M\left(1,2\right)\)thuộc (d) nên : \(2=a+b\Rightarrow b=2-a\left(1\right)\). Xét phương trình hoành độ giao điểm có : \(x^2=ax+b\left(2\right)\)thế 1 vào 2 có \(x^2=ax+2-a\Leftrightarrow x^2-ax-\left(2-a\right)=0\)phương trình có : \(\Delta=a^2+4\left(2-a\right)=a^2-4a+8\)\(\Rightarrow\Delta=\left(a^2-4a+4\right)+4=\left(a-2\right)^2+4\ge4\forall a\) nên phương trình luôn có hai nghiệm phân biệt với mọi giá tri của \(a\ne0\)
- Khi đó parabol cắt d tại hai điểm A,B với A,B có hoành độ lần lượt là \(x_A,x_B\) theo vi ét ta có : \(\hept{\begin{cases}x_A+x_B=a\\x_Ax_B=-\left(2-a\right)\end{cases}}\)ta xét \(x_A+x_B-x_Ax_B=a+\left(2-a\right)=2\left(dpcm\right)\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Phương trình hoành độ giao điểm của (P) và (d) là \(^{x^2+mx-1=0}\)luông có hai nghiệm phân biệt (vì ac<0)
Tổng và tích hai nghiệm xa, xb là:
xa + xb = -m
xa . xb = -1
Ta có: xa2xb + xb2xa - xaxb = 3 \(\Leftrightarrow\)xaxb(xa + xb) - xaxb = 3 \(\Leftrightarrow\)m + 1 = 3 \(\Leftrightarrow\)m = 2
Bài 3 làm sao v ạ?