Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 4p+1 là hợp số
2.p+8 là số nguyên tố
Mọi người tick ủng hộ nhé
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì 2p+1=2(3k+1)+1=6k+3 chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó 4p+1=4(3k+2)+1=12k+9 chia hết cho 3.
Vậy 4p+1 là hợp số,
xét 3 số 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp nên luôn tồn tại 1 số chia hết cho 3 trong 3 số kia
vì 8p-1 là số nguyên tố lớn hơn 3 lên 8p-1 không chia hết cho 3
8p: vì p là số nguyên tố >3 nên p k chia hết cho 3, 8 cũng không chia hết cho 3 nên 8p k chia hết cho 3
vậy chỉ còn 8p+1 chia hết cho 3
=> là hợp số
p là SNT >3
=>p có dạng 3k+1 và 3k+2 với k khác 0
với p=3k+1 ta có p+8=3k+1+8=3k+9 chia hết cho 3 => là hợp số => loại
với p=3k+2 ta có : p+8=3k+2+8=3k+10 có thể là SNT => chọn
=>p+100=3k+2+100=3k+102 là hợp số
a)
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
cho p và 2p +1 đều là số nguyên tố (p>5).Hỏi 4p +1 là sồ nguyên tố hay hợp số
b, p và p+4 là nguyên tố lớn hơn 3 . chứng tỏ rằng p+8 là hợp số
c, với p là nguyên tố và một trong hai số 8p-1 và 8p+1 là số nguyên tố thì số còn lại là số nguyên tố hay hợp số
a )
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
nhé !
.........
còn câu b ,c chưa nghĩ ra
p là số nguyên tố lớn hơn 3 nên p = 3k + 1 hoặc p = 3k + 2 (k \(\in\) N)
- Nếu p = 3k + 1 thì p + 8 = (3k + 1) + 8 = 3k + 9 = 3.(k + 3) chia hết cho 3, là hợp số, loại.
- Nếu p = 3k + 2 thì p + 8 = (3k + 2) +9 = 3k + 10, có thể là số nguyên tố, chọn.
Khi đó p + 100 = (3k + 2) + 100 = 3k + 102 = 3.(k + 34) chia hết cho 3, là hợp số.
vì p là số nguyên tố lơn hơn 3 nên p : 3 dư 1 hoặc 2
p có dạng p = 3k + 1; p = 3k + 2 ( k ϵ N*)
Lập bảng xét các số p; p+4; p+ 8 theo k ta có
Vì 3k + 9 ⋮ 3
Nên với p và p + 4 là hai số nguyên tố lớn hơn 3 thì p + 8 là hợp số
P là gì vậy ạ