K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2023

p là snt lớn hơn 3 => p lẻ

=> 5p+1 chẵn => 5p+1 là hợp số

24 tháng 11 2023

Vì p là snt>3.Suy ra p ko chia hết cho 3

                      ------- p chia 3 dư 1 hoặc 2

                      ------- p có dạng 3k+1 hoặc 3k+2

+).vs p=3k+1 ------ 5p+1=5.(3k+10)+1

                                      =15k+6=3.(5k+2) chia hết cho 3

                      ------5p+1>3-----5p+1 là hợp số(loại)

                     ------p=3k+2------10p+1=10.(3k+2)+1=30k+1=3.(10k+7) chia hết cho 3

                      ----10p+1>3 ----10p+1 là hợp số

 

21 tháng 11 2017

Nếu p= 2 thì 5p+7=17 (số ng tố)  (tman)

NẾu p>2 thì ta có các dạng p=2k+1

Ta có p=2k+1 thì 5p+7=5x(2k+1)+7=10k+12 (hợp số)   (loại)

Vậy p=2

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

18 tháng 12 2017

p nguyên tố > 3 nên p lẻ => p+1 chia hết cho 2 (1)

p nguyên tố > 3 nên p ko chia hết cho 3

Nếu p chia 3 dư 1 thì p+2 chia hết cho 3 

Mà p+2 > 3 => p+2 là hợp số

=> để p+2 cũng là số nguyên tố thì p chia 3 dư 2

=> p+1 chia hết cho 3 (2)

Từ (1) và (2) => p+1 chia hết cho 2 . 3 = 6 ( vì  2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

10 tháng 6 2018

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

4 tháng 11 2015

1)

+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)

+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)

+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2

      Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3  

            =>p+8 là hợp số (trái với giả thiết )

Vậy p phải có dạng là  3k+2

Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3

=>p+4 là hợp số (đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 1 2021

Lời giải:

Vì $p$ là số nguyên tố lớn hơn $5$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ là số tự nhiên; $k\geq 2$.

Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$ và $2p+1=3(2k+1)>3$ nên $2p+1$ không phải số nguyên tố (trái giả thiết).

Do đó $p=3k+2$.

Khi đó:

$p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+45=9(k^2+3k+5)\vdots 9$ nên $p(p+5)+31$ là hợp số (đpcm)

25 tháng 3 2019

\(p\)là số nguyên tố\(>3\)

Nên\(p=3k+1\)hoặc\(3k+2\)

Xét\(p=3k+1,p+4=3k+1+4=3k+5\)(thỏa mãn)

Xét\(p=3k+2,p+4=3k+2+4=3k+6=3\left(k+2\right)\)là hợp số (loại)

Vậy\(p=3k+1,p+8=3k+1+8=3k+9=3\left(k+3\right)\)là hợp số\(\left(đpcm\right)\)

30 tháng 10 2019

Bạn tham khảo tại đây

 https://olm.vn/hoi-dap/detail/55131374540.html

19 tháng 11 2017

Vì p là số nguyên tố nên p lớn bằng 2

+ Nếu p=2 thì 8p+1=8.2+1=17, là số nguyên tố

                       8p-1=8.2-1=15, là hợp số

+ Nếu p=3 thì 8p+1=8.3+1=25, là hợp số

                       8p-1=8.3-1=23, là số nguyên tố

+ Nếu p>3, mà p là số nguyên tố =>8p ko chia hết cho 3

Xét 3 số tự nhiên liên tiếp : 8p-1, 8p, 8p+1

Trong 3 số tự nhiên nàyphải có 1 số chia hết cho 3, mà 8p ko chia hết cho 3 do đố 1 trong 2 số 8p-1 hoặc 8p+1 phải chia hết cho 3

Do đó 8p-1 hoặc 8p+1 là hợp số( vì 8p-1 > 3; 8p +1 >3)

Vậy nếu p là số nguyên tố và 1 trong 2 số8p+1 và 8p-1 là số nguyên tố thì số còn lại là hợp số