Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nhé!
Với p=3 =>8p-1=23 (thỏa mãn)
8p+1=25(loại)
Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3
mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp
Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3
=> 8p+1 chia hết cho 3
mà 8p+1>3
=>8p+1 là hợp số
Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.
TH1: \(p=3\) thì ta có \(8p-1=23\) là số nguyên tố, \(8p+1=25\) là hợp số.
TH2: \(p=3k+1\), ta có \(8p+1=8\left(3k+1\right)+1=24k+9⋮3\)
Vậy trong trường hợp này \(8p-1\) phải là số nguyên tố, còn \(8p+1\) là hợp số.
TH3: \(p=3k+2\), ta có \(8p-1=8\left(3k+2\right)-1=24k+15⋮3\)
Vậy trong trường hợp này \(8p+1\) phải là số nguyên tố, còn \(8p-1\) là hợp số.
Vậy khi \(p\) là số nguyên tố, nếu 1 trong 2 số \(8p-1;8p+1\) là số nguyên tố thì số còn lại là hợp số.
3n+2 chia hết cho 3n+2
=>2.(3n+2)=6n+4 chia hết cho 3n+2
Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2
=>6n+4-(5n+7)=n-3 chia hết cho 3n+2
n-3 chia hết cho 3n+2
=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2
Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2
=> -11 chia hết cho 3n+2
=>3n+2 thuộc Ư(-11)
=>3n+2={1;-1;-11;11}
=>3n={-1;-3;-13;9}
=>n={-1/3;-1;-13/3;3}
Nếu p=2
8p-1=16-1=15 là hợp số trái với đề(TVĐ)
Nếu p=3
8p-1=8.3-1=24-1=23
8p+1=8.3+1=24+1=25 là hợp số
Nếu p>3
TH1:p=3k+1(vì p là số nguyên tố)
8p-1=8.(3k+1)-1=24k+8-1=24k+7
8p+1=8.(3k+1)+1=24k+8+1=24k+9 là hợp số
TH2:p=3k+2
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) chia hết cho 3
Mà p>3
=>8p-1>3
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) là hợp số(TVĐ)
Vậy nếu 8p - 1 và p là SNT thì 8p + 1là hợp số
a) Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
b) p nguyên tố, p >=5, 2p+1 nguyên tố
Vì p nguyên tố > 3 nên p không chia hết cho 3
nếu p chia 3 dư 1 => 2p chia 3 dư 2
=> 2p+1 chia hết cho 3, vô lí do 2p+1 nguyên tố > 3
vậy p chia 3 dư 2 => p+1 chia hết cho 3
=> 4p+1 = 3p + p+1 chia hết cho 3 và 4p+1 > 3
=> 4p+1 là hợp số
............................
1
gọi số cần tìm là p.dễ thấy p lẻ
=>p=a+2 và p=b-2
=>a=p-2 và b=p+2
vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3
với p-2=3=>p=5=7-2(chọn)
p=3=>p=1+2(loại)
p+2=3=>p=1(loại)
vậy p=5
2
vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3
theo giả thiết:
p3 = p2 + d = p1 + 2d (*)
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ)
đặt d = 2m, xét các trường hợp:
* m = 3k => d chia hết cho 6
* m = 3k + 1: khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 2
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt)
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1
* m = 3k + 2, khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 4
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt)
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.
3
ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.
mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ
=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6
4
vì p là SNT >3=>p=3k+1 hoặc p=3k+2
với p=3k+1=>p+8=3k+9 chia hết cho 3
với p=3k+2=>p+4=3k+6 ko phải là SNT
vậy p+8 là hợp số
5
vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3
vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3
=>8p+1 là hợp số
6.
Ta có: Xét:
+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)
+n=1
=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)
+n=2
=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)
+n=3
=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)
+n=4
n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)
Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3
+n=4k+1
⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)
+n=4k+2
=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)
+n=4k+3
=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)
⇔n=4
4.vì p là số nguyên tố >3
nên p có dạng 3k+1;3k+2
xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)
xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)
vậy p+8=(3k+1)+8=3k+9 chia hết cho 3
Vậy p+8 là hợp số
Vì p là số nguyên tố nên p lớn bằng 2
+ Nếu p=2 thì 8p+1=8.2+1=17, là số nguyên tố
8p-1=8.2-1=15, là hợp số
+ Nếu p=3 thì 8p+1=8.3+1=25, là hợp số
8p-1=8.3-1=23, là số nguyên tố
+ Nếu p>3, mà p là số nguyên tố =>8p ko chia hết cho 3
Xét 3 số tự nhiên liên tiếp : 8p-1, 8p, 8p+1
Trong 3 số tự nhiên nàyphải có 1 số chia hết cho 3, mà 8p ko chia hết cho 3 do đố 1 trong 2 số 8p-1 hoặc 8p+1 phải chia hết cho 3
Do đó 8p-1 hoặc 8p+1 là hợp số( vì 8p-1 > 3; 8p +1 >3)
Vậy nếu p là số nguyên tố và 1 trong 2 số8p+1 và 8p-1 là số nguyên tố thì số còn lại là hợp số