Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
a/
Ta có
\(\widehat{BAC}=90^o\) (góc nt chắn nửa đường tròn)
\(\Rightarrow AB\perp AC\Rightarrow AE\perp AC;HF\perp AC\left(gt\right)\) => AE//HF
\(AC\perp AB\Rightarrow AF\perp AB;HE\perp AB\left(gt\right)\) => AF//HE
=> AEHF là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Mà \(\widehat{BAC}=90^o\left(cmt\right)\)
=> AEHF là hình CN
b/
Xét tg vuông EHA và tg vuông ABC có
\(\widehat{EAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg EHA đồng dạng với tg ABC
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{HE}{AB}\)
Mà AEHF là hình CN (cmt) => HE=AF (cạnh đối HCN)
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\Rightarrow AE.AB=AF.AC\left(dpcm\right)\)
c/
\(\widehat{BAC}=90^o\left(cmt\right)\)
d/
Xét tg vuông HFC có
\(HI=CI\left(gt\right)\Rightarrow FI=HI=CI=\dfrac{HC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> H; F; C cùng nằm trên đường tròn đường kính HC tâm I
=> đường tròn tâm I đường kính HC là đường tròn ngoại tiếp tg HFC
=> tg IHF cân tại I \(\Rightarrow\widehat{IFH}=\widehat{IHF}\)
Ta có
HF//AB (cùng vuông góc với AC) \(\Rightarrow\widehat{IHF}=\widehat{ABC}\) (góc đồng vị)
\(\Rightarrow\widehat{IFH}=\widehat{ABC}\) (1)
Xét tg vuông EAH và tg vuông HFE có
HE chung; AE=HF (cạnh đối hình CN) => tg EAH = tg HFE (Hai tg vuông có 2 cạnh góc vuông bàng nhau)
\(\Rightarrow\widehat{EAH}=\widehat{HFE}\)
Mà \(\widehat{EAH}=\widehat{ACB}\left(cmt\right)\)
\(\Rightarrow\widehat{HFE}=\widehat{ACB}\) (2)
Mà \(\widehat{ABC}+\widehat{ACB}=90^o\) (3)
Từ (1) (2) (3)
\(\Rightarrow\widehat{IFH}+\widehat{HFE}=\widehat{IFE}=\widehat{ABC}+\widehat{ACB}=90^o\)
=> EF là tiếp tuyến với (I)