Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2:
Với n = 3k +1 thì:
n^2 + 2006 = (3k+1). (3k+1) +2006
= 9.k.k + 3k+3k+1 + 2006
= 3.(3.k.k +1+1)+1+2006
= 3.(3.k.k +1+1) + 2007 chia hết cho 3
=> Với n = 3k+1 thì n^2 + 2006 là hợp số
Với n= 3k+2 thì:
(3k+2).(3k+2)+2006 = 9.k.k+6k+6k+4+2006
=3(3.k.k + 2k +2k)+4+2006
=3(3.k.k +2k+2k)+2010 chia hết cho 3
=>Với n = 3k+2 thì n^2 +2006 là hợp số
Vậy với mọi số nguyên tố n lớn hơn 3 thì n^2 +2006 là hợp số
(Hãy làm theo cách của mình đi, đúng đó.Từ đóhãy tick cho mình nha)
=
TH1: n = 3k + 1 => (3k + 1)2 + 2006 <=> 9k2 + 6k + 1 + 2006 = 3k(3k + 2) + 2007
3k(3k + 2) chia hết cho 3 và 2007 chia hết cho 3 =>[3k(3k + 2) + 2007] chia hết cho 3 (1)
TH2: n = 3k + 2 => (3k + 2)2 + 2006 <=> 9k2 + 12k + 4 + 2006 = 3k(3k + 4) + 2010
3k(3k + 4) chia hết cho 3 và 2010 chia hết cho 3 => [3k(3k + 4) + 2010] chia hết cho 3 (2)
Từ (1) và (2) => n2 + 2006 là hợp số
Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3
hay n=3k+1 hoặc n=3k+2(k∈N)
Thay n=3k+1 vào \(n^2+2006\), ta được:
\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)
Thay n=3k+2 vào \(n^2+2006\), ta được:
\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)
Từ (1) và (2) suy ra \(n^2+2006\) là hợp số
Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.
Ta có: 10p + 1 - p = 9p + 1
Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k
17p + 1 = 8p + 9p + 1 = 8p + 2k = 2.(4p + k) ⋮ 2
⇒ 17p + 1 là hợp số (đpcm)
Câu 1:
Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.
Nếu $p=3k+2$ thì:
$10p+1=10(3k+2)+1=30k+21\vdots 3$
Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)
$\Rightarrow p$ có dạng $3k+1$.
Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
(đpcm)
n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số
Vì vậy: n2+2015 là hợp số
-Vì n là số nguyên tố lớn 3 nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)
Với n =3k+1:
n2+2015=(3k+1)2+2015
=(3k+1).(3k+1)+2015
=3k(3k+1)+(3k+1)+2015
=9k2+3k+3k+1+2015
=9k2+6k+2016
Ta có:
9k2 chia hết cho 3
6k chia hết cho 3
2016 chia hết cho 3
=> 9k2+6k+2016 chia hết cho 3
Mà 9k2+6k+2016 > 3
=> 9k2+6k+2016 là hợp số
=>n2+2015 là hợp số (1)
Với n=3k+2:
n2+2015=(3k+2)2+2015
=(3k+2).(3k+2)+2015
=3k(3k+2)+2(3k+2)+2015
=9k2+6k+6k+4+2015
=9k2+12k+2019
Ta có:
9k2 chia hết cho 3
12k chia hết cho 3
2019 chia hết cho 3
=> 9k2+12k+2019 chia hết cho 3
Mà 9k2+12k+2019 > 3
=> 9k2+12k+2019 là hợp số
=>n2+2015 là hợp số (2)
Từ (1) và (2) suy ra : n2+2015 là hợp số
Vậy n2+2015 là hợp số
nhớ tick ủng hộ mình !
sai rồi : a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a( Z) ( a2 – n2 = 2006( (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số.
Ta có: n là số nguyên tố lớn hơn 3
=>n không chia hết cho 3
TH1: n=3m+1 (m thuộc N)
=>n2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>n2 chia 3 dư 1
TH2: n=3n+2 (k thuộc N)
=>n2=(3k+2)2=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=3(3k2+4k+1)+1
=>n2 chia 3 dư 1
Vậy n2 luôn chia 3 dư 1 (với n là SNT >3)
=>n2=3x+1 (x thuộc N)
=>n2+2006=3x+1+2006=3x+2007=3(x+669) chia hết cho 3
Vậy n2+2006 là hợp số
Bài giải
n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2
Ta có :
Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)
\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)
Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)
\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)
Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số
ai làm chi tiết cho mik đi mik tick người đó 5 li-ke
Số nguyên tố không bao gời là số chẵn ( trừ số 2 ) và lúc nào cũng là số lẻ
Số lẻ + Số lẻ = Số chẵn
=> n + 2015 là hợp số
là hợp số nha!