K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
LD10 GP
-
H10 GP
n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số
Vì vậy: n2+2015 là hợp số
-Vì n là số nguyên tố lớn 3 nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)
Với n =3k+1:
n2+2015=(3k+1)2+2015
=(3k+1).(3k+1)+2015
=3k(3k+1)+(3k+1)+2015
=9k2+3k+3k+1+2015
=9k2+6k+2016
Ta có:
9k2 chia hết cho 3
6k chia hết cho 3
2016 chia hết cho 3
=> 9k2+6k+2016 chia hết cho 3
Mà 9k2+6k+2016 > 3
=> 9k2+6k+2016 là hợp số
=>n2+2015 là hợp số (1)
Với n=3k+2:
n2+2015=(3k+2)2+2015
=(3k+2).(3k+2)+2015
=3k(3k+2)+2(3k+2)+2015
=9k2+6k+6k+4+2015
=9k2+12k+2019
Ta có:
9k2 chia hết cho 3
12k chia hết cho 3
2019 chia hết cho 3
=> 9k2+12k+2019 chia hết cho 3
Mà 9k2+12k+2019 > 3
=> 9k2+12k+2019 là hợp số
=>n2+2015 là hợp số (2)
Từ (1) và (2) suy ra : n2+2015 là hợp số
Vậy n2+2015 là hợp số
nhớ tick ủng hộ mình !