Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3
hay n=3k+1 hoặc n=3k+2(k∈N)
Thay n=3k+1 vào \(n^2+2006\), ta được:
\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)
Thay n=3k+2 vào \(n^2+2006\), ta được:
\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)
Từ (1) và (2) suy ra \(n^2+2006\) là hợp số
Đặt n2 + 2006 = a2 (a thuộc Z)
=> 2006 = a2 - n2 = (a - n)(a + n) (1)
Mà (a + n) - (a - n) = 2n chia hết cho 2
=>a + n và a - n có cùng tính chẵn lẻ
+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)
+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)
Vậy không có n thỏa mãn n2+2006 là số chính phương
b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3
=> n = 3k + 1 hoặc n = 3k + 2 (k$$N*)
+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3
=> n2 + 2006 là hợp số
Vậy n2 + 2006 là hợp số
a) Giả sử n2
(a+n) = 2006 (*)
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*)
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia
hết cho 4 nên không thỏa mãn (*)
Vậy không tồn tại n để n2
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2
+ 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2
+ 2006 là hợp số.
+ 2006 là số chính phương khi đó ta đặt n2
+ 2006 là số chính phương.
Đã biết câu trả lời mà còn hỏi nữa con rảnh ruồi kia -__-
Vì n là số nguyên tố lớn hơn 3 nên
=>n^2 chia 3 dư 1
=>n^2+2006=3k+1+2006=3k+2007
(3k+2007)chia hết cho3
3k+2007>3
=> 3k+2007 là hợp số
Hay n^2+2006 là hợp số
thì bạn ví dụ số n là số nguyên tố nào đó lớn hơn 3 rồi sau đó thay vào biểu thức là xong
Theo mình nghĩ là số nguyên tố
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
n là số nguyên tố lớn hơn 3 nên không chia hết cho 3 .
Vậy n2 chia cho 3 dư 1 tức là n2 = 3k + 1
Do đó n2 + 2006 = 3k + 1 + 2006 = 3k + 2007 chia hết cho 3 .
Vậy n2 + 2006 là hợp số .
Vì 2006 là hợp số, mà n là số nguyên tố lớn hơn 3 nên n là số lẻ>3, mà số lẻ2=số lẻ
=>2006+số lẻ=số lẻ là số nguyên tố
mk cũng k chắc về bài này lắm
ta sẽ có số thay : 5;7;11
Từ đó ta có: +5^2+2006=10+2006=2016 => là hợp số
+7^2+2006=14+2006=2020=>là hợp số
+11^2+2006=22+2006=2028=>là hợp số
Từ 3 ví dụ trên ta tháy nếu n là số nguyên tố >3 thì n^2 +2006 là hợp số
vì n là số nguên tố lớn hơn 3
suy ra n chia 3 dư 1 và chia 3 dư 2
suy ra n^2 chia 3 dư 1
mà 2006 chia 3 dư 2
suy ra n^2+2006=3k+1+668*3+2
suy ra 3(k+669) chia hết cho 3
suy ra n^2+2006 là hợp số
HOẶC BẠN CÓ THỂ LÀM THEO CÁCH ĐỒNG DƯ THÌ NHANH HƠN
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
Số nguyên tố lớn hơn 3 có dạng 3k + 1 hoặc 3k + 2 (k \(\in\) N)
Với n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 1 + 2006 = 9k2 + 2007 = 9.(k2 + 223) chia hết cho 9, là hợp số.
Với n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 4 + 2006 = 9k2 + 2010 = 3.(3k2 + 670) chia hết cho 3, là hợ số.
Vậy n2 + 2006 là hợp số.
sai rồi : a) Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a( Z) ( a2 – n2 = 2006( (a-n) (a+n) = 2006 (*) (0,25 điểm).
+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) ( 0,25 điểm).
+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn (*) (0,25 điểm).
Vậy không tồn tại n để n2 + 2006 là số chính phương. (0,25 điểm).
b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m+2007= 3( m+669) chia hết cho 3.
Vậy n2 + 2006 là hợp số.
Ta có: n là số nguyên tố lớn hơn 3
=>n không chia hết cho 3
TH1: n=3m+1 (m thuộc N)
=>n2=(3m+1)2=3m(3m+1)+(3m+1)=9m2+3m+3m+1=3(3m2+2m)+1
=>n2 chia 3 dư 1
TH2: n=3n+2 (k thuộc N)
=>n2=(3k+2)2=3k(3k+2)+2(3k+2)=9k2+6k+6k+4=3(3k2+4k+1)+1
=>n2 chia 3 dư 1
Vậy n2 luôn chia 3 dư 1 (với n là SNT >3)
=>n2=3x+1 (x thuộc N)
=>n2+2006=3x+1+2006=3x+2007=3(x+669) chia hết cho 3
Vậy n2+2006 là hợp số