Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n^2+m=a^2
Vì m là ước dương của 2n^2 nên 2n^2=mk ( k∈N )
Suy ra n^2+m=n^2+(2n^2)/k=a^2
⇔n^2.k^2+2n^2.k=a^2.k^2
Suy ra :
k^2+2k=(ak/n)^2à số chính phương.
Suy ra Vô lý vì k^2<k^2+2k<(k+1)^2
^ là mũ;/là phân số; . là nhân
chúc bạn học tốt
Vì d là ước nguyên dương của \(2n^2\)
\(\Rightarrow2n^2=kd\)
\(\Rightarrow d=\frac{2n^2}{k}\forall k\inℕ^∗\)
Giair sử \(n^2+d=a^2\)
\(\Leftrightarrow n^2+\frac{2n^2}{k}=a^2\)
\(\Leftrightarrow n^2k^2+2n^2k=a^2k^2\)
\(\Leftrightarrow n^2\left(k^2+2k\right)=\left(ak\right)^2\)
Vô lí vì \(k^2< k^2+2k< \left(k+1\right)^2\) nên không là số chính phương
\(\Rightarrow\) Giả sử là sai
\(\Rightarrow n^2+d\) không phải là sôc chính phương ( đpcm )
Lời giải:
Đặt $2n^2=ma$ với $a$ là số nguyên dương
$\Rightarrow m=\frac{2n^2}{a}$
$\Rightarrow n^2+m=n^2+\frac{2n^2}{a}$
Giả sử $n^2+m=n^2+\frac{2n^2}{a})$ là scp. Đặt $n^2+\frac{2n^2}{a}=k^2(k\in\mathbb{N})$
$\Rightarrow n^2a+2n^2=ak^2$
$\Rightarrow n^2(a+2)=ak^2$
$\Rightarrow n^2(a^2+2a)=a^2k^2=(ak)^2$
Mà $a^2+2a\in\mathbb{Z}^+$ nên $\Rightarrow a^2+2a$ cũng phải là 1 scp
Hiển nhiên $a^2+2a=(a+1)^2-1< (a+1)^2$ và $a^2+2a> a^2$
$\Rightarrow a^2< a^2+2a< (a+1)^2$
Theo định lý kẹp thì $a^2+2a$ không thể là scp. Tức là điều gs là vô lý.
$\Rightarrow n^2+m$ không là scp.