K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNE có \(ME^2=NM^2+NE^2\)

nên ΔMNE vuông tại N

b: MH=3,6cm

HE=6,4cm

a: ta có: ΔMNP cân tại M

mà MH là đường cao

nên H là trung điểm của NP

hay HN=HP

b: NH=NP/2=8/2=4(cm)

=>MH=3(cm)

c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có

MH chung

\(\widehat{DMH}=\widehat{EMH}\)

Do đó: ΔMDH=ΔMEH

Suy ra: HD=HE

hay ΔHED cân tại H

Đường thẳng vuông góc với AM tại A cắt BX, Cy lần lượt tại D, E 

17 tháng 3 2022

 a,Tam giác MNP vuông tại M

=> NP22=MN2+MP2( định lí pytago )

=> 102=62+MP2

=> MP2=100-36=64

=> MP=8cm

 

8 tháng 4 2020

a) vì M là tđ AB -> AM=1/2AB=5cm
        N là tđ AC -> AN=1/2AC= 12cm
áp dụng pytago vào tam giác ANM => MN=13cm
b) theo công thức tính diện tích tam giác ANM (cái này mình chưa biết bạn học chưa, nếu chưa thì nhắn cho mình giải thích cho)
1/2(AM x AN) = 1/2(MN x AH)
=> AM x AN = MN x AH -> 5 x 12 = 13 x AH
=> AH=60/13cm
c) xét 2 tam giác BKM vuông tại K và AHM vuông tại H 
có góc AMH + góc BMK ( đối đỉnh )
     AM=MB ( M là Tđ AB)
=> 2 tam giác BKM=AHM (cạnh huyền góc nhọn)

d) áp dụng pytago vào tam giác AHM vuông tại H
AM2-AH2=HM2 => HM=MK=25/13cm (vì 2 tam giác ở câu c bằng nhau)

tam giác ABC có góc A vuông 

ta có : BC2  = AB+AC2 ( định lý pytago )

thay BC2 = 102 + 242 

=> BC=26 cm

ta lại có : M là trung điểm của AB  => AM=1/2AB=1/2 . 10 =5 cm

tương tự : N là trung điểm của AC => AN = 1/2AC = 1/2 .24 = 12 cm 

tam giác AMN vuông tại A , ta có : MN2 = AM2 + AN2 ( định lí pytago )

                                              thay MN2 = 52 + 122 

                                             => MN = 13 cm 

Vậy MN = 13 cm 

a: NP=căn 3^2+4^2=5cm

b: Xét ΔNMK vuông tại M và ΔNHK vuông tại H có

NK chung

góc MNK=góc HNK

=>ΔNMK=ΔNHK

c: Xét ΔKMI vuông tại M và ΔKHP vuông tại H có

KM=KH

góc MKI=góc HKP

=>ΔKMI=ΔKHP

=>KI=KP

=>KP>MI

10 tháng 7 2016
làm ơn các pan đấy ai biết thì giúp mình với hu...hu
10 tháng 1 2021

Bạn nên ktra lại con số 15cm

a/ Áp dụng định lí Pythagoras cho t/g ABC vuông tại A có

\(AB^2+AC^2=BC^2\)

=> \(AC=\sqrt{161}\) (cm)

b/ t/g ABH vuông tại H và t/g EBH vuông tại H có

AB = EB

BH : chung

=> t/g ABH=t/g EBH (ch-cgv)

=> HA = HE (2 cạnh t/ứ)

c/ Có \(\widehat{BAH}=\widehat{BEH}\) (do t/g ABH = t/g EBH)

=> \(180^o-\widehat{BAH}=180^o-\widehat{BEH}\)

=> \(\widehat{EAD}=\widehat{AEC}\)

=> t/g AEC = t/g EAD

=> AC = DE

d/

AB = BEAD = EC

=> AB + AD = BE + EC

=> BD = BC=> t/g BCD cân tại B

Có t/g ABH = t/g EBH

=> \(\widehat{ABH}=\widehat{EBH}\)

=> BH là pg góc ABEHay BH là pg góc DBCXét t/g BDC có BH là đường pg

=> BH đồng thời là đường cao

=> BH ⊥ DC