Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
Xét \(\Delta ABD\)và \(\Delta HBD\)ta có :
\(\widehat{ABD}=\widehat{HBD}\)( Vì BD là tia phân giác ) (1)
\(BD:\)Cạnh chung (2)
\(\widehat{BAD}=\widehat{BHD}=90^o\) (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta HBD\)( góc - cạnh-góc)
b) Vì \(\Delta ABD=\Delta HBD\)( Chứng minh ở câu a)
\(\Rightarrow AB=HB\)( Cặp cạnh tương ứng )
\(\Rightarrow\Delta ABH\)Cân (1)
Ta lại có : BD là phân giác (2)
Từ (1) và (2)
=> BD là đường trung trực của AH
( Vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường trung trực)
c) Vì \(\Delta ABD=\Delta HBD\)( Chứng minh câu a )
\(\Rightarrow AD=HD\)( Cặp cạnh tương ứng )
Xét \(\Delta ADK\)và \(\Delta HDC\)ta có :
\(\widehat{KDA}=\widehat{CDH}\)( đối đỉnh ) (1)
\(AD=HD\)(Chứng minh trên) (2)
\(\widehat{KAD}=\widehat{CHD}=90^o\)(GT ) (3)
Từ (1);(2) và (3)
\(\Rightarrow\Delta ADK=\Delta HDC\)( Góc - cạnh góc )
\(\Rightarrow DK=DC\)( Cặp cạnh tương ứng )
d) Áp dụng định lí Py-ta-go ta có :
\(AB^2+AC^2=BC^2\)
\(6^2+8^2=BC^2\)
\(36+64=BC^2\)
\(\Rightarrow100=BC^2\)
\(\Rightarrow BC=\sqrt{100}\)
\(\Rightarrow BC=10\)
Vì AB=HB ( Chứng minh ở câu b)
Mà \(AB=6cm\)
\(\Rightarrow HB=6cm\)
Ta có : \(HB+HC=BC\)
\(\Rightarrow6+HC=10\)
\(\Rightarrow HC=10-6\)
\(\Rightarrow HC=4cm\)
a) Xét △ABC vuông tại A có:
BC² = AC² + AB² (ĐL Pytago)
BC² = 8² + 6²
BC² = 100
BC = 10 cm
Vậy BC = 10 cm
b) Xét △ABD và △EBD có:
góc BAD = góc BED (=90°)
BD chung
góc ABD = góc EBD (BD là tia p/g của góc ABC)
=> △ABD = △EBD (ch-gn)
c) Câu này đề bài có cho thiếu gia thiết ko bạn chứ vẽ hình chả biết ntn á
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=6+8+10=24\left(cm\right)\)
b) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)