K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

a, vì tgABC là tg cân tại A có AH là đường cao 

=> AH là đường phân giác của gBAC

xét tgAHB và tgAHC có AB=AC

                                     gBAH=gCAH

                                    AH là cạnh chung

=> tgAHB=tgAHC (c.g.c)

b, vì tgABC là tg cân tại A có AH là đường cao

=> AH là đường trung tuyến 

=> H là trung điểm của BC

c, bn xem lại đề bài câu c giúp mk 

mk ko hiểu lắm

23 tháng 3 2016

1.

Ta có : AC<AD (vì : D là tia đối của tia BC )

=> HD<HC

3. 

Ta có : AB+AC>AH (vì : tog 2 cah cua tam giác luôn lớn hơn cah con lại)

Mà : 1/2AH<AB+AC

=> AB+AC>2AH

4.

Ta có : ko hiu

23 tháng 3 2016

bạn giải bài 3 mik hk hiu, bn viết rõ rak dc hk

19 tháng 4 2017

vẽ hình đi

25 tháng 4 2018

a) Xét tam giác BAH và tam giác CAH; có

                AH:cạnh chung

                AB=AC( tam giác ABC cân tại A )

                gócAHB=gócAHC( =90 độ )

            -> tam giác BAH = tam giác CAH( ch-gn )

            -> HB=HC ( 2 cạnh tương ứng )

8 tháng 7 2021

A B H C

a,xét ΔAHB VÀ ΔAHC

AB=AC(gt)

góc AHB= góc AHC=900

AH:cạnh chung

⇒ΔAHB=ΔAHC(cạnh huyền- góc nhọn)

⇒AH là đường trung tuyến của ΔABC

b,Ta có HB=1/2 BC

➩HB =1/2*BC

⇒HB=1/2*8

⇒HB=4(cm)

xét ΔAHBcó góc AHB=900

 AB2=AH2+HB2(định lý py -ta- go)

⇒AH2=AB2-HB2

⇒ AH2= 52- 42

⇒AH2=25-16

⇒AH2=9

⇒AH2=(3)2=(-3)2

⇒AH=3(cm)

26 tháng 1 2018

Từng bài 1 thôi nha!

Mình làm bài 3 cho dễ

Bn tự vẽ hình

a) CM tg ABH=tg ACH (ch-cgv)

=> HC=HB=2 góc tương ứng 

Nên H là trung điểm BC

=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH

b) Có: tg ABH vuông tại H (AH vuông góc BC)

=> AH2+BH2=AB => AH2+42=52 => AH2=9

Mà AH>O Nên AH=3

c) Xét tg ADH và tg AEH có:

\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)

=> HD=HE(2 góc tương ứng)

=> tg HDE cân tại H 

NM
14 tháng 1 2022

ta có độ dài AB là : \(\left(17+7\right):2=12cm\)

độ dài AC là : \(12-7=5cm\)

độ dài cạnh BC là : \(BC=\sqrt{12^2+5^2}=13cm\)

Chu vi tam giác ABC là : \(AB+BC+AC=12+5+13=30cm\)

DIện tích tam giác ABC là : \(AB\times\frac{AC}{2}=12\times\frac{5}{2}=30cm^2\)

20 tháng 12 2020

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15cm

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20cm

Vậy: AB=15cm; AC=20cm

Ta có: BH+CH=BC(H nằm giữa B và C)

hay BC=9+16=25cm

Ta có: \(AB^2+AC^2=15^2+20^2=625\)

\(BC^2=25^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)