Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét 1/2 < 2/3 ; 3/4<4/5 ; ............ ; 99/100<100/101
=> 1/2.3/4.......99/100 < 2/3.4/5.........100/101
=> M<N
b, M.N = 1/2.3/4.4/5......99/100.2/3.4/5.5/6......100/101
M.N = 1/2.2/3.3/4.4/5.............99/100.100/101
M.N = 1/101
c, Vì M<N nên M.M < M.N Hay M.M < 1/101 < 1/100
hay M.M < 1/10 . 1/10
=> M < 1/10 (Đpcm)
a) Ta có M.N = 1/2.2/3.3/4.4/5....99/10.10/101 = 1/101
b) Xét M và N đều gồm 50 thừa số mà:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> M < N
c) Do M < N nên => M.M < M.N (Nhân 2 vế với M)
=> M.M < 1/101 (Vì M.N = 1/101 theo cma)
Mặt khác 1/101 < 1/100
=> M.M < 1/100 = 1/10.1/10
=> M < 1/10
Bài 1:
Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)
\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)
\(=\dfrac{11}{27}\)
Câu 2:
B=1+1/2+1/3+....+1/2010
=(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)
= 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006
=2011.(1/2010+.....1/1005.1006)
Vậy B có tử số chia hết cho 2011 (đpcm).
Câu 3:
\(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)
Mà
\(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)
Ta có:
M=\(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\)
M=\(\frac{1.3....99}{2.4....100}\)
Lại có:
N=\(\frac{2}{3}.\frac{4}{5}....\frac{100}{101}\)
N=\(\frac{2.4....100}{3.5....101}\)
\(\Rightarrow\)M.N=\(\frac{1.2.3......99.100}{2.3.4......100.101}\)
\(\Rightarrow\)M.N=\(\frac{1}{101}\)
c) \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{1}{2}.\frac{4}{4}.\frac{6}{6}...\frac{100}{100}=\frac{1}{2}\)
Đặt \(N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
ta có: \(M.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}=\frac{1}{101}\)
ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow M.M< M.N\)
\(\Rightarrow M^2< \frac{1}{101}< \frac{1}{100}=\left(\frac{1}{10}\right)^2\)
\(\Leftrightarrow M^2< \left(\frac{1}{10}\right)^2\)
\(\Rightarrow M< \frac{1}{10}\left(đpcm\right)\)