K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

1. ta có: góc MAC = 900 (MA vuong góc AC)

    góc MDC = 900 (MD vuong góc DC)

    xét tứ giác ACDM co:

    Góc MAC + góc MDC =90+90= 1800

tứ giác ACDM nội tiếp đường tròn ( tổng 2 góc đối bằng 1800) 

2. ta có: góc ADB = 90 (góc nội tiếp chắn nửa đường tròn)

 tam giác ADM vuông tại D

 Góc DAB + DBA = 90

     góc MAB = CMD ( 2 góc nội tiếp chắn nửa đường tròn)

     góc DBA = DNC ( 2 góc nội tiếp chắn nửa đường tròn)

     Góc CMD + góc DNC = 900

   góc MNC = 900                         Tam giác MNC vuông tại N         

6 tháng 6 2018

chịu thôi????????????????????????????

19 tháng 2 2021

A B C D M N E F I
 

Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp

tương tự có đpcm

b, ta có: 

MFN=DAB=90

NEM=BCD=90

=> nội tiếp

c, theo câu b ta có: 

MNB=BEC=BNC nên: NB là phân giác góc INC

thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN 

do đó áp dụng tính chất đường phân giác ta được BI=BC=a.

24 tháng 2 2021

Chứng minh góc EBN = góc ECN = 450

=> Tứ giác BENC nội tiếp (đpcm)

 

3 tháng 4 2020

A B C O H F E M N

a) từ đề bài ta có:

\(HE\perp AB,HF\perp AC\Rightarrow\widehat{AEH}+\widehat{AFH}=90^O+90^O=180^O\)

 \(\Rightarrow AEHF\)  nội tiếp

b) từ câu a\(\rightarrow\widehat{HFE}=\widehat{HAE}=\widehat{HAB}\)   

\(\Rightarrow\widehat{ABC}+\widehat{HFE}=\widehat{ABC}+\widehat{BAH}=90^O\) 

c)    Ta có : AEHF nội tiếp  

\(\Rightarrow\widehat{AEF}=\widehat{AHF}=\widehat{ACB}\left(+\widehat{FHC}=90^O\right)\)

→EFCB nội tiếp

\(\Rightarrow\widehat{BEC}=\widehat{BFC}\)

\(\Rightarrow\widehat{BEC}-90^O=\widehat{BFC}-90^O\)

\(\Rightarrow\widehat{HEC}=\widehat{HFB}\)

→EFNM nội tiếp

\(\Rightarrow\widehat{ENM}=\widehat{EFB}=\widehat{ECB}\)

\(\Rightarrow MN//BC\)