K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

2/a. Có: E là trung điểm của AB(gt) => AE=1/2.AB 
F là trung điểm của CD(gt) => CF=1/2.CD 
Mà AB=CD (vì ABCD là hình bình hành và AB, CD là hai cạch đối nhau) 
=> AE=CF 
Lại có AB//CD (vì ABCD là hình bình hành và AB, CD là hai cạch đối nhau) 
=> AE//CF (vì E thuộc AB, F thuộc CD) 
Tứ giác AECF có: AE=CF (cmt) và AE//CF (cmt) 
=> AECF là hình bình hành 
b. Tam giác DCN có: F là trung điểm của CD(gt) và FM//CN (vì M thuộc AF, N thuộc CE và AF//CE) 
=> M là trung điểm của DN (định lí 1 của bài đường trung bình của tam giác) 
=> DM=MN (a) 
Tam giác ABM có: E là trung điểm của AB(gt) và AM//EN (vì M thuộc AF, N thuộc CE và AF//CE) 
=> N là trung điểm của MB 
=> MN=NB (b) 
Từ (a) và (b) => DM=MN=NB 

22 tháng 7 2016

đề là chứng minh DK=1/4DB mà bạn 

31 tháng 10 2020

A N B F C M D E O

a) Ta có : tứ giác ABCD là hình bình hành (gt)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của AC (1)

và O là trung điểm của BD

\(\Rightarrow OB=OD\)

mà \(DE=BF\left(gt\right)\)

\(\Rightarrow OB-BF=OD-DE\)

\(\Rightarrow OF=OE\)

\(\Rightarrow\)O là trung điểm của EF (2)

Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành

b) Ta có : tứ giác AECF là hinh bình hành (cma)

\(\Rightarrow AE//CF\)

\(\Rightarrow AM//CN\left(3\right)\)

Ta có : tứ giác ABCD là hinh bình hành (gt)

\(\Rightarrow AB//CD\)

\(\Rightarrow AN//CM\left(4\right)\)

TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành 

\(\Rightarrow AM=CN\)

c) Ta có : tứ giác ANMC là hinh bình hành (cmb)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của NM

và O là trung điểm của AC

mà O là trung điểm của BD

\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm