Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
△BDC có ED = EB
MB = MC
⇒ EM là đường trung bình của tam giác này (Theo định nghĩa: đoạn thẳng nối trung điểm hai cạnh của một tam giác là đường trung bình của tam giác đó) ⇒ ME//CD
△AME có DA = DE (gt)
DI//ME (cmt)
⇒ IA = IM (Theo định lí: đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ 3)
\(\Delta BDC\) có BE=ED và BM=MC
nên EM// CD
\(\Rightarrow DI//EM\)
\(\Delta AEM\) có AD=DE và DI//EM
nên AI//IM
t/g DBC có :
ED = EB ( gt )
MB = MC ( gt )
Nên EM là đường trung bình của tam giác DBC
\(\Rightarrow\)EM // DC
T/g AEM có :
DA = DE ( gt )
DI // EM ( cmt , vì EM // DC )
Theo định lý 1 ta có :
AI = IM ( đpcm )
∆BDC có BE = ED và BM = MC
nên EM // DC
==> DI // EM
∆AEM có AD = DE và DI // EM
==> AI = IM.
∆BDC có BE = ED và BM = MC
nên EM // DC
Suy ra DI // EM
∆AEM có AD = DE và DI // EM
nên AI = IM.
Gọi E là trung điểm của DC
Trong ΔBDC, ta có:
M là trung điểm của BC (gt)
E là trung điểm của CD (gt)
Nên ME là đường trung bình của ∆ BCD
⇒ME // BD (tính chất đường trung bình tam giác)
Suy ra: DI // ME
AD = 1/2 DC (gt)
DE = 1/2 DC (cách vẽ)
⇒ AD = DE và DI//ME
Nên AI= IM (tính chất đường trung bình của tam giác).
a/ Ta có
\(AB\perp AC\left(gt\right)\Rightarrow AM\perp AC;IN\perp AC\left(gt\right)\) => AM//IN
\(AC\perp AB\left(gt\right)\Rightarrow AN\perp AB;IM\perp AB\left(gt\right)\) => AN//IM
=> AMIN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Mà \(\widehat{A}=90^o\)
=> AMIN là HCN
b/
Ta co
AM//IN (cmt) =>AB//IK
BK//AI (gt)
=> ABKI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh) => BK=AI (cạnh đối hbh)
c/
Xét tg vuông ABC có
\(AI^2=BI.CI\) (Trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow3AI^2=3.BI.CI\) (1)
Xét tg vuông MBI có
\(BM^2=BI^2-MI^2\) (2) (Pitago)
Xét tg vuông NCI có
\(CN^2=CI^2-NI^2\) (3) (Pitago)
Cộng 2 vế của (1) (2) (3) ta có
\(3AI^2+BM^2+CN^2=BI^2+CI^2+3.BI.CI-\left(MI^2+NI^2\right)=\)
\(=\left(BI+CI\right)^2+BI.CI-\left(MI^2+NI^2\right)=\)
\(=BC^2+BI.CI-\left(MI^2+NI^2\right)\) (4)
Ta có
\(BI.CI=AI^2\left(cmt\right)\) (5)
Xét tg vuông AIN có
\(AI^2=AN^2+NI^2\)
Do AMIN là HCN (cnt) => AN=MI
\(\Rightarrow AI^2=MI^2+NI^2\) (6)
Thay (5) và (6) vào (4) ta có
\(3AI^2+BM^2+CN^2=BC^2+AI^2-AI^2\)
\(\Rightarrow BC^2=3AI^2+BM^2+CN^2\left(dpcm\right)\)
ΔBDC có BE = ED và BM = MC
⇒ EM là đường trung bình của ΔBDC
⇒ EM // DC hay EM // DI.
ΔAEM có DI // EM (cmt) và AD = DE (gt)
⇒ IA = IM (Theo định lý 1)