Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (d) cắt trục tung tại điểm có tung độ bằng -1
\(\Rightarrow\) tọa độ của điểm đó là \(\left(0,-1\right)\)
\(\Rightarrow-1=-3m+3\Rightarrow m=\dfrac{4}{3}\Rightarrow y=\dfrac{5}{3}x-1\)
c) Gọi điểm \(A\left(x_0,y_0\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y_0=\left(2m-1\right)x_0-3m+3\Rightarrow2mx_0-x_0-3m+3-y_0=0\)
\(\Rightarrow m\left(2x_0-3\right)-x_0-y_0+3=0\Rightarrow\left\{{}\begin{matrix}2x_0-3=0\\3-x_0-y_0=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=\dfrac{3}{2}\\y_0=\dfrac{3}{2}\end{matrix}\right.\Rightarrow A\left(\dfrac{3}{2};\dfrac{3}{2}\right)\)
b)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a, Để y là hàm số bậc nhất thì \(m+5\ne0\Leftrightarrow m\ne-5\)
b, Để y là hàm số đồng biến khi \(m+5>0\Leftrightarrow m>-5\)
c, Thay x = 2 ; y = 3 vào hàm số y ta được :
\(2\left(m+5\right)+2m-10=3\)
\(\Leftrightarrow4m=3\Leftrightarrow m=\frac{3}{4}\)
d, Do đồ thị cắt trục tung tại điểm có hoành độ bằng 9 => y = 9 ; x = 0
Thay x = 0 ; y = 9 vào hàm số y ta được :
\(2m-10=9\Leftrightarrow m=\frac{19}{2}\)
e, Do đồ thị đi qua điểm 10 trên trục hoành => x = 10 ; y = 0
Thay x = 10 ; y = 0 vào hàm số y ta được :
\(10m+50+2m-10=0\Leftrightarrow12m=-40\Leftrightarrow m=-\frac{40}{12}=-\frac{10}{3}\)
f, Ta có : y = ( m + 5 )x + 2m - 10 => a = m + 5 ; b = 2m - 10 ( d1 )
y = 2x - 1 => a = 2 ; y = -1 ( d2 )
Để ( d1 ) // ( d2 ) \(\Rightarrow\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-3\\2m\ne9\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\left(tm\right)\\m\ne\frac{9}{2}\end{cases}}}\)
g, h cái này mình quên rồi, xin lỗi )):
gọi A{x0,y0 } là điểm cố định
thay A vào d ta có:
y0=(2m-1)x0-3m+5\(\Rightarrow\)y0-(2m-1)x0+3m+5=0\(\Leftrightarrow\)y0-2mx0+x0+3m+5=0
\(\Leftrightarrow\)m(3-2x0)+(y0+x0+5)=0\(\Leftrightarrow\left\{{}\begin{matrix}3-2x_0=0\\y_0+x_0+5=0\end{matrix}\right.\)(đồng nhất thức)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x_0=\dfrac{3}{2}\\y_0=-\dfrac{13}{2}\end{matrix}\right.\)
a: Để hàm số đồng biến thì m-3>0
=>m>3
b: Vì (d) đi qua O(0;0) và B(-1;2) nên ta có hệ:
0(m-3)+n=0 và -(m-3)+n=2
=>n=0 và m-3=-2
=>m=1 và n=0
c: Vì (d)//y=x-2 nên m-3=1
=>m=4
=>(d): y=x+n
Thay x=0 và y=5 vào (d), ta được:
n+0=5
=>n=5
=>(d): y=x+5
d: Vì (d) đi qua A(2;1) và B(3;0) nên ta có hệ:
2(m-3)+n=1 và 3(m-3)+n=0
=>2m-6+n=1 và 3m-9+n=0
=>2m+n=7 và 3m+n=9
=>m=2 và n=3
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
b: Thay x=-2 và y=1/2 vào (d), ta được:
-2m+4+3m+1=1/2
=>m+5=1/2
hay m=-9/2
1) Để (d) cắt trục tung tại điểm có tung độ là -1 nên Thay x=0 và y=-1 vào hàm số y=(2m-1)x-3m+5, ta được:
\(\left(2m-1\right)\cdot0-3m+5=-1\)
\(\Leftrightarrow-3m+5=-1\)
\(\Leftrightarrow-3m=-1-5=-6\)
hay m=2(nhận)
Vậy: Khi m=2 thì (d) cắt trục tung tung tại điểm có tung độ bằng -1