K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

9 tháng 11 2018

Đáp án A

Sử dụng BĐT buhinhacopski ta có

x − 2 + y + 3 2 ≤ 1 + 1 x − 2 + y + 3 = 2 x + y + 2 .

Tức là ta có  x + y + 1 2 ≤ 4 2 x + y + 2   . Đặt  t = x + y   . Chú ý rằng  t ≥ − 1   .

Ta có

t + 1 2 ≤ 8 t + 8 ⇔ t 2 − 6 t − 7 ≤ 0 ⇔ − 1 ≤ t ≤ 7.  

Vậy max t = 7  xảy ra khi   x − 2 = y + 3 x + y = 7 ⇔ x = 6 y = 1 .

6 tháng 2 2019

Đáp án C

Phương pháp:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Cách giải:

 

<=>  

 

 

  (2)

Đặt  

=> f(t) đồng biến trên (0;+∞) 

<=>

<=>

Khi đó, 

vì 

Vậy Pmax = 1 khi và chỉ khi 

13 tháng 9 2019

Đáp án C

Phương pháp giải:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Lời giải:

log 3 x + y x 2 + y 2 + x y + 2 =  x ( x - 3 ) + y ( y - 3 ) + x y (1)

(2)

Đặt

 

=> f(t) đồng biến trên (0;+∞)

Khi đó, 

vì 

Vậy Pmax = 1 khi  và chỉ khi 

17 tháng 4 2017

Đáp án C

Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .

25 tháng 11 2019

Chọn A.

Phương pháp:

- Biến đổi điều kiện bài cho về dạng f u = f v  với u, v là các biểu thức của x, y.

- Xét hàm f t  suy ra mối quan hệ của u, v rồi suy ra x, y.

- Đánh giá P theo biến t=x+y bằng cách sử dụng phương pháp hàm số.

Cách giải:

6 tháng 9 2019

Xét hàm  trên  ℝ  và đi đến kết quả 

23 tháng 7 2019

Suy ra f(t) đồng biến trên TXĐ và pt f ( t ) = 21  chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 - 2 x - y = 10 ⇒ y = 1 - 2 x ⇒ P = 16 x 2 1 - 2 x - 2 x 3 - 6 x + 2 - 1 + 2 x + 5 = - 32 x 3 + 28 x 2 - 8 x + 4 P ' = - 96 x 2 + 56 x - 8 P ' = 0 ⇔ [ x = 1 4 x = 1 3 P 0 = 4 , P 1 3 = 88 27 ,   P 1 4 = 13 4 , P 1 2 = 3 ⇒ m = 13 4 ,   M = 4 ⇒ M + 4 m = 17