K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2022

Ta có:

A = \(\dfrac{2017}{2019}=1-\dfrac{2}{2019}\)

B= \(\dfrac{2019}{2021}\) = 1- \(\dfrac{2}{2021}\)

Ta có:

\(\dfrac{2}{2019}>\dfrac{2}{2021}\)

=> 1- \(\dfrac{2}{2019}< 1-\dfrac{2}{2021}\)

=> \(\dfrac{2017}{2019}< \dfrac{2019}{2021}\)

Lại có \(\dfrac{1}{2}< \dfrac{2}{3}\)

=>\(\dfrac{2017}{2019}+\dfrac{1}{2}< \dfrac{2019}{2021}+\dfrac{2}{3}\)

Vậy A<B

14 tháng 3 2021

Mn tính thôi nha !!!!

12 tháng 8 2019

 \(Ta\)có :\(a\)=\(\frac{2017\cdot2018-1}{2017.2018}\)=\(\frac{2017.2018}{2017.2018}\)-\(\frac{1}{2017.2018}\)=1-\(\frac{1}{2017.2018}\)

          \(b\)=\(\frac{2019.2020-1}{2019.2020}\)=\(\frac{2019.2020}{2019.2020}\)-\(\frac{1}{2019.2020}\)=1-\(\frac{1}{2019.2020}\)

Vì \(\frac{1}{2018.2019}\)\(\frac{1}{2019.2020}\)nên \(a\)\(b\)(sử dụng phần bù)

  

   

23 tháng 3 2023


 

1 tháng 8 2017
     

\(A=\frac{2016^{2016}+1}{2016^{2017}+1}\Rightarrow2016A=\frac{2016^{2017}+2016}{2016^{2017}+1}=1+\frac{2015}{2016^{2017}+1}\)

\(B=\frac{2016^{2017}-3}{2016^{2018}-3}\Rightarrow2016B=\frac{2016^{2018}-6048}{2016^{2018}-3}=1+\frac{-6045}{2016^{2018}-3}\)

Vì \(\frac{2015}{2016^{2017}+1}>0;\frac{-6045}{2016^{2018}-3}< 0\)

Nên: A>B

  
11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

25 tháng 8 2019

ko ghi lại đề 

ta thấy : 2019 - 1 = 2018 

2020 - 2 = 2018 

2021 - 3 = 2018 

2022 - 4 = 2018 

=> x = 2018

thử lại :

2018+1/2019 + 2018+2/2020 = 2018+3/2021 + 2018+4/2022

= 1 + 1 = 1 + 1

2 = 2

22 tháng 2 2020

2020 - 2 = 2018 
2021 - 3 = 2018 
2022 - 4 = 2018 
=> x = 2018

thây zô mà thử lại

NM
13 tháng 2 2022

ta có : 

\(A=\frac{2017}{2019}+\frac{1}{2}=1-\frac{2}{2019}+1-\frac{1}{2}< 1-\frac{2}{2021}+1-\frac{1}{3}=\frac{2019}{2021}+\frac{2}{3}=B\)

Vậy A<B ta chọn đáp án C

23 tháng 3 2023

Vậy A<B ta chọn đáp án C

 

12 tháng 8 2019

\(A=\frac{2020}{2019}-\frac{2019}{2018}+\frac{1}{2019\times2018}\)

\(=\frac{2020\times2018}{2019\times2018}-\frac{2019\times2019}{2019\times2018}+\frac{1}{2019\times2018}\)

\(=\frac{2020\times2018-2019\times2019+1}{2019\times2018}\)

\(=\frac{\left(2019+1\right)\times\left(2019-1\right)-2019\times2019+1}{2019\times2018}\)

\(=\frac{2019\times2019-2019+2019-1-2019\times2019+1}{2019\times2018}\)

\(=\frac{2019\times2019-1-\left(2019\times2019-1\right)}{2019\times2018}\)

\(=\frac{0}{2019\times2018}\)

\(=0\)

Vậy A = 0 

12 tháng 8 2019

ta có

A=2020*2018/2019*2018-2019*2019/2018*2019+1/2018*2019

=>A*(2018*2019)=2020*2018-2019*2019+1

=>A*(2018*2019)=(2019+1)*2018-(2018+1)*2019+1

=>A*(2018*2019)=(2019*2018+2018)-(2018*2019+2019)+1

=>A*(2018*2019)=2019*2018+2018-2018*2019-2019+1

=>A*(2018*2019)=2018-2019+1

=>A*(2018*2019)=2018+1-2019

=>A*(2018*2019)=0

=>A=0/(2018*2019)

=>A=0