Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
a) Qua A kẻ tiếp tuyến chung trong của (O) và (O') cắt d tại N.
Theo tính chất 2 tiếp tuyến cắt nhau ta có: NA = NB và NA = NC . Do đó NB = NC => NA là trung tuyến của tam giác ABC và \(NA=\frac{1}{2}BC\). Từ đó => tam giác ABC vuông tại A.
b) Theo phần a ta đã chứng minh được N là trung điểm BC thì AN là tiếp tuyến chung của 2 đường tròn => M trùng với N. Vậy AM là tiếp tuyến chung của 2 đường tròn.
2) xét tam giác BMC có ba đường cao BA,ME,CD =>ba đường thẳng đó đồng quy
4) chứng minh t/g AMEB nội tiếp => góc MAE= MBE ( hai góc nội tiếp cùng chắn cung ME)
có goc DAC=DBC( vi t/g ABCD nội tiếp )
=>MAE=DAC (=goc MBC) =>AC là phân giác của DAM
xét tam giác ADEcó: MN và AC là hai tia phân giác cắt nhau tại M => M là tâm đường tròn nội tiếp tam giác ADE