K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Hình tự vẽ

Theo đề có AB là tiếp tuyến của (O) nên \(AB\perp OB\Rightarrow\widehat{ABO}=90^o\)

Trong tam giác vuông ABO có : OB = R ; OA = 2R nên cos \(\widehat{AOB}=\frac{OB}{OA}=\frac{1}{2}\Rightarrow\widehat{AOB}=60^o\)

Theo t/c 2 tiếp tuyến cắt nhau nên ta có AO là phân giác \(\widehat{BOC}\Rightarrow\widehat{AOC}=60^o\) 

mà \(\widehat{AOC}\)và \(\widehat{COD}\)kề bù nên suy ra \(\widehat{COD}=120^o\)

a: Xét (O) có

CM,CA là các tiếp tuyến

nen CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA 

nên OC vuông góc với MA tại trung điểm của MA

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD vuông góc với MB tại trung điểm của MB

Từ (1)và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính DC

b: Xét tứ giác MIOK có

góc MIO=góc IOK=góc MKO=90 độ

nên MIOK là hình chữ nhật

=>MO=IK

c: Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

a: góc CMO=góc CAO=90 độ

=>CAMO nội tiếp

b: góc OMD+góc OBD=180 độ

=>OMDB nội tiếp

góc COD=góc COM+góc DOM

=180 độ-góc CAM+góc DBM

=180 độ-góc CAM+góc PAB

=góc MAP+góc PAB

=2*góc PAB

=góc AOB