K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

A B C M N D E O

Vì D,E là trung điểm của BC và MN nên ta có OD vuông góc với BC và OE vuông góc với MN

VÌ góc ODA + góc OEA = 90 độ + 90 độ = 180 độ nên ODAE là tứ giác nội tiếp

Suy ra A,D,O,E cùng thuộc 1 đường tròn. (đường tròn đường kính AO)

30 tháng 9 2021

A B D E K O C d1 d2 H I G

a/

\(d_1;d_2\) là tiếp tuyến với đường tròn tại A và B \(\Rightarrow d_1\perp AB;d_2\perp AB\) => \(d_1\)//\(d_2\)

Xét tg vuông ABK có

\(\widehat{ACB}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow AK^2=KC.KB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/ 

Ta có 

DA=DC (2 tiếp tuyến của 1 đường tròn cùng xuất phát từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau) (1)

EC=EB (lý do như trên) => tg EBC cân tại E\(\Rightarrow\widehat{ECB}=\widehat{KBE}\) (2 góc ở đáy của tg cân) (*)

\(\widehat{KBE}=\widehat{AKB}\) (góc so le trong) (**)

\(\widehat{KCD}=\widehat{ECB}\) (Góc đối đỉnh) (***)

Từ (*) (**) và (***) \(\Rightarrow\widehat{AKB}=\widehat{KCD}\) => tg DCK cân tại D => DC=DK (2)

Từ (1) và (2) => DA=DK nên K là trung điểm của AK

c/ Gọi I là giao của CH với BD

Ta có 

\(CH\perp AB;d_1\perp AB\) => CH//\(d_1\)

\(\Rightarrow\frac{IC}{DK}=\frac{BC}{BK}=\frac{BH}{BA}=\frac{IH}{DA}\) (Talet trong tam giác)

Mà DK=DA => IC=IH => BD đi qua trung điểm I của CH

d/

30 tháng 9 2021

câu a ý số 2 bạn còn cách nào khác ko? Tại mk chx hc góc nội tiếp chắn nửa đường tròn

12 tháng 6 2018

A B C O M D E H K I P

a) Xét tứ giác ABOC: ^ABO=^ACO=900 (Do AB và AC là 2 tiếp tuyến của (O))

=> Tứ giác ABOC nội tiếp đường tròn dường kính AO (1)

Ta có: DE là dây cung của (O), I là trung điểm DE => OI vuông góc DE => ^OIA=900

Xét tứ giác ABOI: ^ABO=^OIA=900 => Tứ giác ABOI nội tiếp đường tròn đường kính AO (2)

(1) + (2) => Ngũ giác ABOIC nội tiếp đường tròn

Hay 4 điểm B;O;I;C cùng thuộc 1 đường tròn (đpcm).

b) Gọi P là chân đường vuông góc từ D kẻ đến OB

Ta có: Tứ giác BOIC nội tiếp đường tròn => ^ICB=^IOP (Góc ngoài tại đỉnh đối) (3)

Dễ thấy tứ giác DIPO nội tiếp đường tròn đường kính OD

=> ^IOP=^IDP (=^IDK) (4)

(3) + (4) => ^ICB=^IDK (đpcm).

c) ^ICB=^IDK (cmt) => ^ICH=^IDH => Tứ giác DHIC nội tiếp đường tròn

=> ^DIH=^DCH hay ^DIH=^DCB.

Lại có: ^DCB=^DEB (2 góc nội tiếp cùng chắn cung BD) => ^DIH=^DEB

Mà 2 góc trên đồng vị => IH // EB hay IH // EK

Xét tam giác KDE: I là trung điểm DE (Dễ c/m); IH // EK; H thuộc DK

=> H là trung điểm DK (đpcm).

góc MAI+góc MEI=180 độ

=>MAIE nội tiếp

a) Ta có ABAB và ACAC là tiếp tuyến tại AA và BB của (O)(O)

⇒AB⊥OB⇒AB⊥OB và AC⊥OCAC⊥OC

Xét AOB và ΔAOCAOB và ΔAOC có:

OB=OC(=R)OB=OC(=R)

ˆABO=ˆACO=90oABO^=ACO^=90o

OAOA chung

⇒ΔAOB=ΔAOC⇒ΔAOB=ΔAOC (ch-cgv)

⇒AB=AC⇒AB=AC và có thêm OB=OC⇒AOOB=OC⇒AO là đường trung trực của BCBC

Mà H là trung điểm của BC

⇒A,H,O⇒A,H,O thẳng hàng

Tứ giác ABOCABOC có ˆABO+ˆACO=90o+90o=180oABO^+ACO^=90o+90o=180o

⇒A,B,C,O⇒A,B,C,O cùng thuộc đường tròn đường kính OAOA.

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0

b) Xét tứ giác OMEC có

\(\widehat{OCE}\) và \(\widehat{OME}\) là hai góc đối

\(\widehat{OCE}+\widehat{OME}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OMEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)