Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tâm của đường tròn \(I(5;3)\)
Tiếp tuyến nhận vectơ \(\overrightarrow {IM} \) làm vectơ pháp tuyến nên ta có: \(\overrightarrow n = \overrightarrow {IM} = \left( {6;8} \right)\)
Điểm M nằm trên tiếp tuyến nên ta có phương trình:
\(6\left( {x - 11} \right) + 8\left( {y - 11} \right) = 0 \Leftrightarrow 3x + 4y - 77 = 0\)
Vậy phương trình tiếp tuyến của đường tròn \((C):{\left( {x - 5} \right)^2} + {\left( {y - 3} \right)^2} = 100\) tại điểm \(M(11;11)\) là \(3x + 4y - 77 = 0\)
Gọi C là giao điểm của AB và \(\Delta\), O là giao điểm IM và AB
Gọi \(I=\left(m;n\right)\Rightarrow IM:x-3y-m+3n=0\)
\(M:\left\{{}\begin{matrix}x-3y-m+3n=0\\x+y=0\end{matrix}\right.\Rightarrow M=\left(\dfrac{m-3n}{4};\dfrac{3n-m}{4}\right)\)
\(\Rightarrow IM=\sqrt{\left(\dfrac{m-3n}{4}-m\right)^2+\left(\dfrac{3n-m}{4}-n\right)^2}=\dfrac{\sqrt{10}\left|m+n\right|}{4}\)
\(d\left(I,\Delta\right)=\dfrac{\left|m+n\right|}{\sqrt{2}}=2\sqrt{2}\Rightarrow\left|m+n\right|=4\left(1\right)\)
\(\Rightarrow IM=\sqrt{10}\)
Ta có \(IO.IM=IA^2=R^2\Rightarrow IO=\dfrac{IB^2}{IM}=\dfrac{4}{\sqrt{10}}\)
\(d\left(I;AB\right)=\dfrac{\left|3m+n-2\right|}{\sqrt{10}}=\dfrac{4}{\sqrt{10}}\Rightarrow\left|3m+n-2\right|=4\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\) tìm được tọa độ điểm I
Đến đây viết phương trình đường tròn tâm I có bán kính \(R=\sqrt{2}\) là được.
Lời giải:
Gọi PTTT đi qua $K(3;6)$ nên có dạng $(d):a(x-3)+b(y-6)=0(*)$ với $a^2+b^2\neq 0$
Gọi $I(1,2)$ là tâm đường tròn và $M$ là tiếp điểm của đường tiếp tuyến với đường tròn.
Ta có:
$IM=R=d(I,d)$
$\Leftrightarrow 3=\frac{|-2a-4b|}{\sqrt{a^2+b^2}}$
$\Rightarrow 5a^2-7b^2-16ab=0$
$\Rightarrow a=\frac{8+3\sqrt{11}}{5}b$ hoặc $a=\frac{8-3\sqrt{11}}{5}b$
Thay vô $(*)$ rồi rút gọn thì:
PTTT là:
$\frac{8+3\sqrt{11}}{5}x+y-\frac{54+9\sqrt{11}}{5}=0$
hoặc $\frac{8-3\sqrt{11}}{5}x+y-\frac{54-9\sqrt{11}}{5}=0$
a: MN lớn nhất
=>MN là đường kính
=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)
Ta có hệ pt:
3a+b=0 và -a+b=2
=>a=-1/2 và b=1/2
b: Kẻ IH vuông góc MN
MN nhỏ nhất khi H trùng với A
=>vecto IA=(4;-2)
Δ có phương trình là:
4(x-3)+(-2)(y-0)=0
=>4x-12-2y=0
Đề bài thiếu :
Cho đường tròn (C) có phương trình: x2 + y2 - 4x + 8y - 5 = 0
Giải :
a) Tâm I(2 ; -4), R = 5
b) Đường tròn có phương trình: (x - 2 )2 + (y + 4)2 = 25
Thế tọa độ A(-1 ; 0) vào vế trái, ta có :
(-1- 2 )2 + (0 + 4)2 = 32 + 42 = 25
Vậy A(-1 ;0) là điểm thuộc đường tròn.
Áp dụng công thức tiếp tuyến (Xem sgk)
Ta được pt tiếp tuyến với đường tròn tai A là:
(-1 - 2)(x - 2) + (0 + 4)(y + 4) = 25 <=> 3x - 4y + 3 = 0
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\). Đường thẳng \(\Delta \) đi qua điểm \(N\left( {1;0} \right)\) nhận \(\overrightarrow {IN} = \left( {0;2} \right)\) làm vecto pháp tuyến là \(y = 0\).