K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải:

Gọi PTTT đi qua $K(3;6)$ nên có dạng $(d):a(x-3)+b(y-6)=0(*)$ với $a^2+b^2\neq 0$
Gọi $I(1,2)$ là tâm đường tròn và $M$ là tiếp điểm của đường tiếp tuyến với đường tròn.

Ta có:

$IM=R=d(I,d)$

$\Leftrightarrow 3=\frac{|-2a-4b|}{\sqrt{a^2+b^2}}$

$\Rightarrow 5a^2-7b^2-16ab=0$

$\Rightarrow a=\frac{8+3\sqrt{11}}{5}b$ hoặc $a=\frac{8-3\sqrt{11}}{5}b$

Thay vô $(*)$ rồi rút gọn thì:

PTTT là:

$\frac{8+3\sqrt{11}}{5}x+y-\frac{54+9\sqrt{11}}{5}=0$

hoặc $\frac{8-3\sqrt{11}}{5}x+y-\frac{54-9\sqrt{11}}{5}=0$

 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Đường tròn \(\left( C \right)\) có tâm \(I\left( {1; - 2} \right)\). Đường thẳng \(\Delta \) đi qua điểm \(N\left( {1;0} \right)\) nhận \(\overrightarrow {IN}  = \left( {0;2} \right)\) làm vecto pháp tuyến là \(y = 0\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Ta có tâm của đường tròn \(I(5;3)\)

Tiếp tuyến nhận vectơ \(\overrightarrow {IM} \) làm vectơ pháp tuyến nên ta có: \(\overrightarrow n  = \overrightarrow {IM}  = \left( {6;8} \right)\)

Điểm M nằm trên tiếp tuyến nên ta có phương trình:

\(6\left( {x - 11} \right) + 8\left( {y - 11} \right) = 0 \Leftrightarrow 3x + 4y - 77 = 0\)

Vậy phương trình tiếp tuyến của đường tròn \((C):{\left( {x - 5} \right)^2} + {\left( {y - 3} \right)^2} = 100\) tại điểm \(M(11;11)\) là \(3x + 4y - 77 = 0\)

NV
9 tháng 4 2021

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

9 tháng 4 2021

Câu 2 đâu pa

I(x,y) có tung độ dương nên y>0 và thuộc (d)

nên I(x;-3x-4)

y>0

=>-3x-4>0

=>-3x>4

=>x<-4/3

Theo đề, ta có: d(I;Ox)=d(I;Oy)=R

(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|

=>3x+4=x hoặc -3x-4=x

=>2x=-4 hoặc -4x=4

=>x=-2(nhận) hoặc x=-1(loại)

=>I(-2;2)

R=|2|=2

=>(C): (x+2)^2+(y-2)^2=4

=>B

I(x,y) có tung độ dương nên y>0 và thuộc (d)

nên I(x;-3x-4)

y>0

=>-3x-4>0

=>-3x>4

=>x<-4/3

Theo đề, ta có: d(I;Ox)=d(I;Oy)=R

(C) tiếp xúc với Ox,Oy nên |x|=|-3x-4|

=>3x+4=x hoặc -3x-4=x

=>2x=-4 hoặc -4x=4

=>x=-2(nhận) hoặc x=-1(loại)

=>I(-2;2)

R=|2|=2

=>(C): (x+2)^2+(y-2)^2=4

=>B

4 tháng 4 2021

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

4 tháng 4 2021

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)