K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải: 

$M\in d_1$ nên gọi tọa độ của $M$ là $(2a+3,a)$

Khoảng cách từ $M$ đến $(d_2)$ là:\(\frac{|2a+3+a+1|}{\sqrt{1^2+1^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow |3a+4|=1\Leftrightarrow 3a+4=\pm 1\)

\(\Leftrightarrow a=-1; a=\frac{-5}{3}\)

Thay vào ta có tọa độ của điểm $M$

30 tháng 1 2021

Lấy \(M\in d_1\Rightarrow M\left(2y+3;y\right)\)

Ta có: \(d\left(M;d_2\right)=\dfrac{1}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2y+3+y+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|3y+4\right|}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow\left|3y+4\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}3y+4=1\\3y+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{5}{3}\end{matrix}\right.\)

\(y=1\Rightarrow M\left(5;1\right)\)

\(y=-\dfrac{5}{3}\Rightarrow M\left(-\dfrac{1}{3};-\dfrac{5}{3}\right)\)

a) Tìm tất cả các giá trị của tham số m đẻ khoảng cách từ giao điểm của hai đường thẳng  \(d_1:\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\) và \(d_2:x-2y+m=0\) đến gốc tọa độ bằng 2      b) Trong mp xOy cho hai điểm A(2;3) B(1;4)  . Đường thẳng cách đều hai điểm là             c)    Trong mp xOy cho hai điểm A(0;1) B(12;5)  C(-3;0). Đường thẳng cách đều ba điểm là                                                           ...
Đọc tiếp

a) Tìm tất cả các giá trị của tham số m đẻ khoảng cách từ giao điểm của hai đường thẳng  \(d_1:\left\{{}\begin{matrix}x=t\\y=2-t\end{matrix}\right.\) và \(d_2:x-2y+m=0\) đến gốc tọa độ bằng 2     

b) Trong mp xOy cho hai điểm A(2;3) B(1;4)  . Đường thẳng cách đều hai điểm là            

c)    Trong mp xOy cho hai điểm A(0;1) B(12;5)  C(-3;0). Đường thẳng cách đều ba điểm là                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

1
NV
30 tháng 3 2021

Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:

\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)

\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)

\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)

\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB

c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB

30 tháng 3 2021

b) 

A. x-y+2=0

B. x+2y=0

C.2x-2y+10=0

D. x-y+100=0

c)

A. x-3y+4=0

B. -x+y+10=0

C. x+y=0

D. 5x-y+1=0

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 1} \right),\overrightarrow {{n_2}}  = \left( {1;1} \right)\)

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + ( - 1).1 = 0\) nên \(\overrightarrow {{n_1}}  \bot \overrightarrow {{n_2}} \)

Giải hệ phương trình \(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - 3; - 1} \right)\)

 b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {5; - 2} \right),\overrightarrow {{n_2}}  = \left( {5; - 2} \right)\)

\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;3)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(5.1 - 2.3 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song

c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3;1} \right),\overrightarrow {{n_2}}  = \left( {3;1} \right)\)

Suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(2;5)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(3.2 + 5 - 11 = 0\), suy ra A thuộc đường thẳng \({d_2}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) trùng nhau

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\)và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 2} \right),\overrightarrow {{n_2}}  = \left( {3; - 1} \right)\)

Ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.3 + \left( { - 2} \right).( - 1)} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)

b) Ta có vectơ pháp tuyến của hai đường thẳng \({d_1}\) và \({d_2}\) lần lượt là \(\overrightarrow {{n_1}}  = \left( {5; - 1} \right),\overrightarrow {{n_2}}  = \left( {1;5} \right)\)

Ta có \({a_1}{a_2} + {b_1}{b_2} = 5.1 + ( - 1).5 = 0\)

Suy ra \(\left( {{d_1},{d_2}} \right) = 90^\circ \)

c) Ta có vectơ chỉ phương của hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt là \(\overrightarrow {{u_1}}  = \left( {2; 4} \right),\overrightarrow {{u_2}}  = \left( {1;2} \right)\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.1+4.2} \right|}}{{\sqrt {{2^2} + {{ { 4} }^2}} \sqrt {{1^2} + {{{ 2}}^2}} }} = 1 \Rightarrow \left( {{d_1},{d_2}} \right) = 0^\circ \)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {1; - 5} \right),\overrightarrow {{n_2}}  = \left( {10;2} \right)\)

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.10 + ( - 5).2 = 0\) nên \(\overrightarrow {{n_1}}  \bot \overrightarrow {{n_2}} \)

Giải hệ phương trình \(\left\{ \begin{array}{l}x - 5y + 9 = 0\\10x + 2y + 7 = 10\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x =  - \frac{3}{{52}}\\y = \frac{{93}}{{52}}\end{array} \right.\)

Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - \frac{3}{{52}};\frac{{93}}{{52}}} \right)\)

b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3; - 4} \right),\overrightarrow {{n_2}}  = \left( {3, - 4} \right)\)

\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;1)\) thuộc \({d_2}\), thay tọa độ của A vào phương trình \({d_1}\), ta được \(3.1 - 4.1 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_1}\)

Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song

c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}}  = \left( {3; - 4} \right),\overrightarrow {{n_2}}  = \left( {6; - 8} \right)\)

Ta có \({a_1}{b_2} - {a_2}{b_1} = 3.( - 8) - ( - 4).6 = 0\)suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau

Lấy điểm \(A(1;1)\) thuộc \({d_2}\), thay tọa độ của A vào phương trình \({d_1}\), ta được \(\left\{ \begin{array}{l}1 = 5 + 4t\\1 = 4 + 3t\end{array} \right. \Leftrightarrow t =  - 1\), suy ra A thuộc đường thẳng \({d_1}\)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) trùng nhau

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Ta có: \({\Delta _1}:3\sqrt 2 x + \sqrt 2 y - \sqrt 3  = 0 \Leftrightarrow \sqrt 2 \left( {3\sqrt 2 x + \sqrt 2 y - \sqrt 3 } \right) = 0 \Leftrightarrow 6x + 2y - \sqrt 6  = 0\)

Do đó hai đường thẳng trùng nhau.

b) Ta có: \(\frac{1}{{\sqrt 3 }} = \frac{{ - \sqrt 3 }}{{ - 3}} \ne \frac{2}{2}\), do đó hai đường thẳng song song với nhau.

c) Ta có: \(\frac{1}{3} \ne \frac{{ - 2}}{1}\), do đó hai đường thẳng cắt nhau. 

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 1\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {1.1 + ( - 1).1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {1^2}} }} = 0 \Rightarrow {d_1} \bot {d_2}\)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc với nhau tại điểm có tọa độ \(( - 3; - 1)\)

b) Đường thẳng \({d_1}\) có phương trình tổng quát là: \({d_1}:2x - y + 1 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}2x - y + 1 = 0\\x - 3y + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{1}{5}\\y = \frac{3}{5}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {2.\left( { - 1} \right) + 1.( - 3)} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{d_1},{d_2}} \right) = 45^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) cắt nhau tại điểm có tọa độ \(\left( { - \frac{1}{5};\frac{3}{5}} \right)\) và góc giữa chúng là \(45^\circ \)

c) Đường thẳng \({d_1}\) và \({d_2}\) lần lượt có phương trình tổng quát là:

\({d_1}:3x + y - 11 = 0,{d_2}:x - 3y + 8 = 0\)

Tọa độ giao điểm của hai đường thẳng là nghiệm của hệ sau:

\(\left\{ \begin{array}{l}3x + y - 11 = 0\\x - 3y + 8 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = \frac{7}{2}\end{array} \right.\)

\(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {3.1 + 1.( - 3)} \right|}}{{\sqrt {{3^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = 0 \Rightarrow \left( {{d_1},{d_2}} \right) = 90^\circ \)

Vậy hai đường thẳng \({d_1}\) và \({d_2}\) vuông góc tại điểm có tọa độ \(\left( {\frac{5}{2};\frac{7}{2}} \right)\)

2 tháng 5 2021

ta có:nd1=(1;-2)

         nd2=(3;-1)

Có a là góc giữa hai đường thẳng d1 và d2:

⇒Cos a+\(\left|cos\left(nd1;nd2\right)\right|\)=\(\dfrac{\left|3+2\right|}{\sqrt{1^2+2^2}.\sqrt{3^2+1^2}}\)

=\(\dfrac{5}{5\sqrt{2}}\)=\(\dfrac{\sqrt{2}}{2}\)

⇒Cos a=\(\dfrac{\sqrt{2}}{2}\)=45 độ

NV
21 tháng 3 2021

\(d_1\) nhận \(\left(m;1\right)\) là 1 vtpt

\(d_2\) nhận \(\left(1;2\right)\) là 1 vtpt

Ta có: \(cos45^0=\dfrac{\left|m.1+1.2\right|}{\sqrt{m^2+1}.\sqrt{1+2^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\sqrt{2}\left|m+2\right|=\sqrt{5\left(m^2+1\right)}\)

\(\Leftrightarrow2\left(m+2\right)^2=5\left(m^2+1\right)\)

\(\Leftrightarrow3m^2-8m-3=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{1}{3}\end{matrix}\right.\)