Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{1}{1} \ne \frac{4}{{ - 4}}\), do đó hai vecto pháp tuyến không cùng phương. Vậy hai đường thẳng cắt nhau.
b) Ta có: \(\frac{1}{2} = \frac{2}{4}\), do đó hai vecto pháp tuyến này cùng phương. Suy ra hai đường thẳng \({\Delta _1},{\Delta _2}\) trùng nhau hoặc cắt nhau.
Mặt khác, điểm \(M\left( {\sqrt 5 ;0} \right)\) thuộc \({\Delta _1}\) nhưng không thuộc \({\Delta _2}\) nên hai đường thẳng \({\Delta _1},{\Delta _2}\) song song.
a) Ta có: \(\overrightarrow {{n_1}} = \left( {\sqrt 3 ;1} \right),\overrightarrow {{n_2}} = \left( {1;\sqrt 3 } \right)\)
Suy ra: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\sqrt 3 .1 + 1.\sqrt 3 } \right|}}{{\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} .\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }} = \frac{{\sqrt 3 }}{2} \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {30^o}\)
b) Ta có: \(\overrightarrow {{u_1}} = \left( {2;4} \right),\overrightarrow {{u_2}} = \left( {1; - 3} \right)\)
Suy ra: \(\cos \left( {{d_1},{d_2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {2.1 + 4.\left( { - 3} \right)} \right|}}{{\sqrt {{2^2} + {4^2}} .\sqrt {{1^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{\sqrt 2 }}{2} \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)
a) Tọa độ giao điểm của hai đường thẳng \({\Delta _1};{\Delta _2}\)là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}\sqrt 3 x + y - 4 = 0\\x + \sqrt 3 y - 2\sqrt 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \sqrt 3 \\y = 1\end{array} \right.\)
b) Ta có: \(\cos \left( {{\Delta _1};{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{2\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{2} \Rightarrow \left( {{\Delta _1};{\Delta _2}} \right) = {30^o}\)
Vậy số đo góc giữa hai đường thẳng \({\Delta _1};{\Delta _2}\) là \({30^o}\).
a) - Ta có: \(\overrightarrow {{u_1}} = \left( {3\sqrt 3 ;3} \right);\overrightarrow {{u_2}} = \left( {1 ;0} \right) \Rightarrow \cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {3\sqrt 3 .1 + 3.0} \right|}}{{\sqrt {{{\left( {3\sqrt 3 } \right)}^2} + {3^2}} .\sqrt {{1^2} + {0^2}} }} = \frac{{\sqrt 3 }}{2}.\)
- Vậy \(\left( {{\Delta _1},{\Delta _2}} \right) = {30^o}\)
b) – Ta có\(\overrightarrow {{n_1}} = \left( {2; - 1} \right);\overrightarrow {{n_2}} = \left( { - 1 ;3} \right) \Rightarrow \cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {2.\left( { - 1} \right) + \left( { - 1} \right).3} \right|}}{{\sqrt {{{\left( 2 \right)}^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{{\left( 1 \right)}^2} + {3^2}} }} = \frac{{\sqrt 2 }}{2}.\)
- Vậy \(\left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)
a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {1; - 1} \right),\overrightarrow {{n_2}} = \left( {1;1} \right)\)
Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.1 + ( - 1).1 = 0\) nên \(\overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \)
Giải hệ phương trình \(\left\{ \begin{array}{l}x - y + 2 = 0\\x + y + 4 = 0\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x = - 3\\y = - 1\end{array} \right.\)
Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - 3; - 1} \right)\)
b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {5; - 2} \right),\overrightarrow {{n_2}} = \left( {5; - 2} \right)\)
\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau
Lấy điểm \(A(1;3)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(5.1 - 2.3 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_2}\)
Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song
c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {3;1} \right),\overrightarrow {{n_2}} = \left( {3;1} \right)\)
Suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau
Lấy điểm \(A(2;5)\) thuộc \({d_1}\), thay tọa độ của A vào phương trình \({d_2}\), ta được \(3.2 + 5 - 11 = 0\), suy ra A thuộc đường thẳng \({d_2}\)
Vậy hai đường thẳng \({d_1}\)và \({d_2}\) trùng nhau
a) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {1; - 5} \right),\overrightarrow {{n_2}} = \left( {10;2} \right)\)
Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.10 + ( - 5).2 = 0\) nên \(\overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \)
Giải hệ phương trình \(\left\{ \begin{array}{l}x - 5y + 9 = 0\\10x + 2y + 7 = 10\end{array} \right.\) ta được nghiệm \(\left\{ \begin{array}{l}x = - \frac{3}{{52}}\\y = \frac{{93}}{{52}}\end{array} \right.\)
Suy ra hai đường thẳng \({d_1}\)và \({d_2}\) vuông góc và cắt nhau tại \(M\left( { - \frac{3}{{52}};\frac{{93}}{{52}}} \right)\)
b) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {3; - 4} \right),\overrightarrow {{n_2}} = \left( {3, - 4} \right)\)
\(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) trùng nhau nên hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau
Lấy điểm \(A(1;1)\) thuộc \({d_2}\), thay tọa độ của A vào phương trình \({d_1}\), ta được \(3.1 - 4.1 + 9 = 8 \ne 0\), suy ra A không thuộc đường thẳng \({d_1}\)
Vậy hai đường thẳng \({d_1}\)và \({d_2}\) song song
c) \({d_1}\)và \({d_2}\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {3; - 4} \right),\overrightarrow {{n_2}} = \left( {6; - 8} \right)\)
Ta có \({a_1}{b_2} - {a_2}{b_1} = 3.( - 8) - ( - 4).6 = 0\)suy ra hai vectơ pháp tuyến cùng phương. Suy ra \({d_1}\)và \({d_2}\)song song hoặc trùng nhau
Lấy điểm \(A(1;1)\) thuộc \({d_2}\), thay tọa độ của A vào phương trình \({d_1}\), ta được \(\left\{ \begin{array}{l}1 = 5 + 4t\\1 = 4 + 3t\end{array} \right. \Leftrightarrow t = - 1\), suy ra A thuộc đường thẳng \({d_1}\)
Vậy hai đường thẳng \({d_1}\) và \({d_2}\) trùng nhau
a) Ta có vectơ pháp tuyến của hai đường thẳng \({\Delta _1}\)và \({\Delta _2}\)lần lượt là \(\overrightarrow {{n_1}} = \left( {1;3} \right),\overrightarrow {{n_2}} = \left( {1; - 2} \right)\)
Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {1.1 + 3.( - 2)} \right|}}{{\sqrt {{1^2} + {3^2}} \sqrt {{1^2} + {{\left( { - 2} \right)}^2}} }} \approx 0,93 \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) \approx 22^\circ 8'\)
b) Ta có vectơ pháp tuyến của hai đường thẳng \({\Delta _1}\)và \({\Delta _2}\)lần lượt là \(\overrightarrow {{n_1}} = \left( {4; - 2} \right),\overrightarrow {{n_2}} = \left( {2; - 1} \right)\)
Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {4.2 + ( - 2).( - 1)} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2}} \sqrt {{2^2} + {{\left( { - 1} \right)}^2}} }} = 1 \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = 0^\circ \)
c) Ta có vectơ pháp tuyến của hai đường thẳng \({\Delta _1}\)và \({\Delta _2}\)lần lượt là \(\overrightarrow {{n_1}} = \left( {2; - 1} \right),\overrightarrow {{n_2}} = \left( {1;2} \right)\)
Ta có \({a_1}{a_2} + {b_1}{b_2} = 2.1 + ( - 1).2 = 0\)
Suy ra \(\left( {{\Delta _1},{\Delta _2}} \right) = 90^\circ \)
a) Tọa độ giao điểm của hai đường thẳng \({d_1},{d_2}\) là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}3x + 2y - 5 = 0\\x - 4y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{9}{7}\\y = \frac{4}{7}\end{array} \right.\)
Hệ phương trình có nghiệm duy nhất nên 2 đường thẳng cắt nhau.
b) Tọa độ giao điểm của hai đường thẳng \({d_3},{d_4}\) là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}x - 2y + 3 = 0\\ - 2x + 4y + 10 = 0\end{array} \right.\) .
Hệ phương trình vô nghiệm.nên 2 đường thẳng song song với nhau
c) Tọa độ giao điểm của hai đường thẳng \({d_5},{d_6}\) tương ứng với t thỏa mãn phương trình:
\(4\left( { - \frac{1}{2} + t} \right) + 2\left( {\frac{5}{2} - 2t} \right) - 3 = 0 \Leftrightarrow 0t = 0\) .
Phương trình này có nghiệm với mọi t. Do đó \({d_5} \equiv {d_6}\).
Xét hệ phương trình gồm phương trình của d và \({\Delta _1}\) ta có: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\3x - 2y + 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = \frac{3}{2}\end{array} \right.\)
Vậy d và \({\Delta _1}\) cắt nhau tại 1 điểm duy nhất.
Xét hệ phương trình gồm phương trình của d và \({\Delta _2}\) ta có: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\x + 2y + 2 = 0\end{array} \right.\). Hệ phương trình vô nghiệm.
Vậy d và \({\Delta _2}\) song song với nhau
Xét hệ phương trình gồm phương trình của d và \({\Delta _3}\) ta có: \(\left\{ \begin{array}{l}x + 2y - 2 = 0\\2x + 4y--4{\rm{ }} = {\rm{ }}0\end{array} \right.\). Hệ phương trình vô số nghiệm.
Vậy d và \({\Delta _3}\) trùng nhau.
a) Ta có: \({\Delta _1}:3\sqrt 2 x + \sqrt 2 y - \sqrt 3 = 0 \Leftrightarrow \sqrt 2 \left( {3\sqrt 2 x + \sqrt 2 y - \sqrt 3 } \right) = 0 \Leftrightarrow 6x + 2y - \sqrt 6 = 0\)
Do đó hai đường thẳng trùng nhau.
b) Ta có: \(\frac{1}{{\sqrt 3 }} = \frac{{ - \sqrt 3 }}{{ - 3}} \ne \frac{2}{2}\), do đó hai đường thẳng song song với nhau.
c) Ta có: \(\frac{1}{3} \ne \frac{{ - 2}}{1}\), do đó hai đường thẳng cắt nhau.