K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đơn thức là học ở lớp 7

các bài này có trong lớp 7

=>đó là bài lớp 7

=>đpcm

31 tháng 5 2020

\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)

Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)

\(x^2;y^4;z^6\ge0\forall x;y;z\)

=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)

=> A luôn nhận giá trị không âm với mọi x, y, z

Để A = 0 => Ít nhất một giá trị = 0

=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0 

4 tháng 3 2018

Ta có: \(a^2,x^2,y^4,z^6\ge0\)với \(\forall a,x,y,z\)

Dấu "=" xảy ra khi \(a=x=y=z=0\)

Lại có: \(3\left(a^2+\frac{1}{a^2}\right)\)khác 0 với \(\forall a\)

Do đó để A = 0 thì x = 0 hoặc y = 0 hoặc z = 0

30 tháng 5 2020

Cho dơn thức A=3.(a^2+1/a^2).x^2.y^4.z^6 với a là hằng số: chứng minh đơn thức A luôn khong âm với mọi x,y,z và với giá trị nào của x,y,z thì A=0

24 tháng 3 2017

a) ta có \(a^2\ge0;\dfrac{1}{a^2}\ge0\Rightarrow a^2+\dfrac{1}{a^2}\ge0\)

suy ra \(3\left(a^2+\dfrac{1}{a^2}\right)\ge0;\)\(x^2\ge0;y^4\ge0;z^6\ge0\Rightarrow x^2y^4z^6\ge0\)

suy ra \(A=3\left(a^2+\dfrac{1}{a^2}\right)x^2y^4z^6\ge0\)

vậy đơn thức A luôn luôn không âm với mọi biến x, y, z

b) muốn A = 0 thì (x;y;z) = (0;0;0)