Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác BAK và tam giác BAO có chung đường cao kẻ từ B xuống cạnh đối diện
=>\(\dfrac{OA}{AK}=\dfrac{SAOB}{SBKA}=\dfrac{SAOC}{SCAK}\)
sư dụng dãy tỉ số bằng nhau ta có \(\dfrac{OA}{AK}=\dfrac{SAOB+SAOC}{SBKA+SCAK}=\dfrac{SAOB+SAOC}{SABC}\)
cmtt với \(\dfrac{OB}{BE}\)và\(\dfrac{OC}{CF}\)ta có \(\dfrac{OB}{BE}\)=\(\dfrac{SBAO+SOBC}{SABC}\),\(\dfrac{OC}{CF}\)=\(\dfrac{SOAC+SBAO}{SABC}\)
=>\(\dfrac{OA}{AK}+\dfrac{OB}{BE}+\dfrac{OC}{CF}=\dfrac{2\left(SOAB+SOAC+SOBC\right)}{SABC}=\dfrac{2SABC}{SABC}=2\)
=>ĐPCM
Đặt \(S_{BOC}=x^2,S_{AOC}=y^2,S_{AOB}=z^2\) \(\Rightarrow S_{ABC}=S_{BOC}+S_{AOC}+S_{AOB}=x^2+y^2+z^2\)
Ta có : \(\frac{AD}{OD}=\frac{S_{ABC}}{S_{BOC}}=\frac{AO+OD}{OD}=1+\frac{AO}{OD}=\frac{x^2+y^2+z^2}{x^2}=1+\frac{y^2+z^2}{x^2}\)
\(\Rightarrow\frac{AO}{OD}=\frac{y^2+z^2}{x^2}\Rightarrow\sqrt{\frac{AO}{OD}}=\sqrt{\frac{y^2+z^2}{x^2}}=\frac{\sqrt{y^2+z^2}}{x}\)
Tương tự ta có \(\sqrt{\frac{OB}{OE}}=\sqrt{\frac{x^2+z^2}{y^2}}=\frac{\sqrt{x^2+z^2}}{y};\sqrt{\frac{OC}{OF}}=\sqrt{\frac{x^2+y^2}{z^2}}=\frac{\sqrt{x^2+y^2}}{z}\)
\(\Rightarrow P=\frac{\sqrt{x^2+y^2}}{z}+\frac{\sqrt{y^2+z^2}}{x}+\frac{\sqrt{x^2+z^2}}{y}\ge\frac{x+y}{\sqrt{2}z}+\frac{y+z}{\sqrt{2}x}+\frac{x+z}{\sqrt{2}y}\)
\(=\frac{1}{\sqrt{2}}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\ge\frac{1}{\sqrt{2}}\left(2+2+2\right)=3\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z\Rightarrow S_{BOC}=S_{AOC}=S_{AOB}=\frac{1}{3}S_{ABC}\)
\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}=\frac{OF}{OC}=\frac{1}{3}\Rightarrow\)O là trọng tâm của tam giác ABC
Vậy \(MinP=3\sqrt{2}\) khi O là trọng tâm của tam giác ABC
Không đủ điều kiện để chứng minh đẳng thức trên bạn nhé.
Mình cũng nghĩ vậy. Chịu thôi, đề ra có vây.