K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Ôn tập chương II - Đa giác. Diện tích đa giác

• Đặt \(S_{ABC}=S;S_{MBC}=S_1;S_{MAC}=S_2;S_{MAB}=S_3\)

• Dựng MK ⊥ BC và AH ⊥ BC

⇒ MK // AH

\(\Rightarrow\dfrac{MD}{AD}=\dfrac{MK}{AH}=\dfrac{\dfrac{1}{2}\times MK\times BC}{\dfrac{1}{2}\times AH\times BC}=\dfrac{S_1}{S}\)

\(\Rightarrow\dfrac{AM}{AD}=1-\dfrac{MD}{AD}=1-\dfrac{S_1}{S}=\dfrac{S_2+S_3}{S}\)

• Tương tự, ta cũng có: \(\dfrac{BM}{BE}=\dfrac{S_1+S_3}{S};\dfrac{CM}{CF}=\dfrac{S_1+S_2}{S}\)

• Cộng vế theo vế, ta có:

\(\dfrac{AM}{AD}+\dfrac{BM}{BE}+\dfrac{CM}{CF}=\dfrac{2\left(S_1+S_2+S_3\right)}{S}=2=const\)

Vậy ta có đpcm.

1 tháng 1 2018

cho tam giác ABC. Các điểm D, E, F lần lượt thuộc AB, AC, BC. chứng minh rằng: a) diện tích ADE trên diện tích ABC bằng AD*AE trên AB*AC . b) Trong 3 tam giác ADE, BDF, CEF tồn tại 1 tam giác có diện tích không vượt quá 1/4 diện tích ABC. Khi nào cả 3 tam giác đó cùng có diện tích = 1/4 diện tích ABC

27 tháng 5 2021

a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.

b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).

Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).

c) Gọi P' là trung điểm của MC.

Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.

Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.

Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.

6 tháng 2 2022

JK trong tim tui òi